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ABSTRACT

Block diagonalization is a linear precoding technique for the mul-
tiple antenna broadcast (downlink) channel that involves transmis-
sion of multiple data streams to each receiver such that no multi-
user interference is experienced at any of the receivers. This low-
complexity scheme operates only a few dB away from capacity but
does require very accurate channel knowledge at the transmitter,
which can be very difficult to obtain in fading scenarios. We con-
sider a limited feedback system where each receiver knows its chan-
nel perfectly, but the transmitter is only provided with a finite num-
ber of channel feedback bits from each receiver. Using a random
vector quantization argument, we quantify the throughput loss due
to imperfect channel knowledge as a function of the feedback level.
The quality of channel knowledge must improve proportional to the
SNR in order to prevent interference-limitations, and we show that
scaling the number of feedback bits linearly with the system SNR is
sufficient to maintain a bounded rate loss. Finally, we investigate a
simple scalar quantization scheme that is seen to achieve the same
scaling behavior as vector quantization.

Index Terms— MIMO systems, Broadcast channels, Quantiza-
tion, Finite Rate Feedback, Multiplexing Gain

1. INTRODUCTION

In multiple antenna broadcast (downlink) channels, transmit antenna
arrays can be used to simultaneously transmit data streams to re-
ceivers and thereby significantly increase throughput. Dirty paper
coding (DPC) is capacity achieving for the MIMO broadcast chan-
nel [1], but this technique has a very high level of complexity. Zero
Forcing (ZF) and Block Diagonalization (BD) [2] [3] are alterna-
tive low-complexity transmission techniques. Although not optimal,
these linear precoding techniques utilize all available spatial degrees
of freedom and perform measurably close to DPC in many scenarios
[4].

If the transmitter is equipped with M antennas and there are
at least M aggregate receive antennas, zero-forcing involves trans-
mission of M spatial beams such that independent, de-coupled data
channels are created from the transmit antenna array to M receive
antennas distributed amongst a number of receivers. Block diago-
nalization similarly involves transmission of M spatial beams, but
the beams are selected such that the signals received at different re-
ceivers, but not necessarily at the different antenna elements of a
particular receiver, are de-coupled. For example, if there are M /2
receivers with two antennas each, then two beams are aimed at each
of the receivers. If ZF is used, an independent and de-coupled data
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stream is received on each of the M antennas. If BD is used, the
streams for different receivers do not interfere, but the two streams
intended for a single receiver are generally not aligned with its two
antennas and thus post-multiplication by a rotation matrix (to align
the streams) is generally required before decoding.

In order to correctly aim the transmit beams, both schemes re-
quire perfect Channel State Information at the Transmitter (CSIT).
Imperfect CSIT leads to incorrect beam selection and therefore mul-
tiuser interference, which ultimately leads to a throughput loss. Un-
like point to point MIMO systems where imperfect CSIT causes only
an SNR offset in the capacity vs. SNR curve, the level of CSIT
affects the slope of the curve and hence the multiplexing gain in
broadcast MIMO systems. We consider the case when the CSI is
known perfectly at the receiver and is communicated to the transmit-
ter through a finite rate feedback channel and quantify the maximum
rate loss due to finite rate feedback with BD. MISO systems and ZF
with finite rate feedback are analyzed in [5]. Similar to the results in
[5], we show that scaling the number of feedback bits approximately
linearly with the system SNR is sufficient to maintain the slope of
the capacity vs. SNR curve and hence a constant gap from the ca-
pacity of BD with perfect CSIT. The scaling factor for BD offers an
advantage over ZF in terms of the number of bits required to achieve
the same sum capacity. Finally, we investigate a simple scalar quan-
tization scheme and see that this low complexity scheme requires the
same feedback scaling.

2. SYSTEM MODEL

We consider a single transmitter and K user MIMO system where
each user has N antennas and the transmitter has M antennas. The
broadcast channel is described as:

yvi=Hx+n;, i=1,...,K )

where H; € CM*¥ js the channel matrix from the transmitter to
the i user (1 < ¢ < K) and the vector x € CM*! is the trans-
mitted signal. n; € CV*! are independent complex Gaussian noise
vectors of unit variance and y; € CN*1 is the received signal vec-
tor at the i user. We assume a transmit power constraint so that
E[||x||’] < P (P > 0). We also assume that K > 1 and K = £,
which implies that the aggregate number of receive antennas equals
the number of transmit antennas; as a result it is not necessary to
select a subset of receivers for transmission.

The entries of H; are assumed to be i.i.d. unit variance complex
Gaussian random variables, and the channel is assumed to be block
fading with independent fading from block to block. Each of the re-
ceivers is assumed to have perfect and instantaneous knowledge of

ICASSP 2007



their own channel matrix. The channel matrix is quantized at each
receiver and fed back to the transmitter (which has no other knowl-
edge of the instantaneous CSI) over a zero delay, error free, finite
rate channel. In order to perform BD, it is only necessary to know
the spatial direction of each receiver’s channel, i.e., the subspace
spanned by H;, and thus the feedback only conveys this informa-
tion.

2.1. Finite Rate Feedback Model

The quantization codebook used at each receiver is fixed beforehand
and is known to the transmitter and each receiver. A quantization
codebook C consists of 22 matricesin CM*N ie. (W1, ..., Wyz),
where B is the feedback bits per user. The quantization of a channel
matrix H;, say H., is chosen from the codebook C according to:

H,; = arg min d? (H;, W) 2)
Wec

where d (H;, W) is the distance metric.
chordal distance [6]:

Here, we consider the

d(Hi, W) = 3)

N
E sing 91
=1

where the 6;’s are the principal angles between the two subspaces
spanned by the columns of the matrices. As the principal angles
depend only on the subspaces spanned by the columns of the matri-
ces, it can be assumed that the elements of C unitary matrices. No
channel magnitude information is fed back to the transmitter.

2.2. Random Quantization Codebooks

Since the design of optimal quantization codebooks for the given
distance metric is a very difficult problem, we instead study perfor-
mance averaged over random quantization codebooks. The Grass-
mannian manifold is the set of all N dimensional subspaces in an
M dimensional Euclidean space, and is denoted by Gun(C). Each
of the 28 matrices making up the random quantization codebook is
chosen independently and uniformly distributed over Gun(C), and
each matrix can be assumed to be unitary (points in Gux(C) are
equivalence classes of orthonormal matrices in C**Y). We ana-
lyze the performance averaged over all possible random codebooks.
The distortion or error associated with a given codebook C for the
quantization of H € CM*¥ is defined as:

D=E|dHH)| =E [%% d2(H7W)} )

where H is the quantization of H. It is shown in [7] D satisfies:

L(7)

D < T (CMN)_%Q_% + N exp |:—(2BCA{N)1_G:| =D
©)

for a codebook of size 22, where T'= N(M — N) and a € (0, 1) is
areal number between O and 1 chosen such that (C’ VN2 ) T <1

Cun is given by = H (M ’))
=1

The second (exponential) term in

(5) for the expression of D can be neglected for large B.

2.3. Block Diagonalization

The Block Diagonalization strategy when perfect CSI is available
at the transmitter involves precoding the signals to be transmitted
in order to suppress interference at each user due to all other users
(but not due to different antennas for the same user). If s; € CV*?
contains the N complex symbols intended for the i (1 < i < K)
user and V; € CM*¥ s the precoding matrix, then the transmitted

vector is given by:
K
P
x:,/?; Visi (©6)

and the received signal at the " user is given by:

vi=i\l% Puivs, + \/ Z HI'V;s;+n; (7)

Jj=1,j#i

It is assumed that a uniform power allocation strategy among
users is employed (due to absence of channel magnitude informa-
tion at the transmitter). Furthermore, in order to maintain the power
constraint it is assumed that V'V, = In and E[||s:||*] < 1.

Following the BD strategy, each V; is chosen such that Hf V;
is 0, Vi # j. This amounts to determining an orthonormal basis
for the null space of the matrix formed by stacking all H;, j # 4
matrices together. This reduces the interference terms in equation (7)
to zero at each user. This is different from Zero Forcing where each
complex symbol to be transmitted to the m™ antenna (among the N
antennas) of the 7" user is precoded by a vector that is orthogonal
to all the columns of H; as well as orthogonal to all but the m™
column of H;.

However, perfect knowledge of the H;’s at the transmitter is re-
quired for zero interference. When finite rate feedback is employed,
each V; is chosen such that I:IfVi = 0Vi # j which is # HJHVZ
in general, and leads to a loss in throughput.

3. THROUGHPUT ANALYSIS

3.1. Fixed Feedback Quality

In the case of perfect CSIT and BD, the transmitter has the ability to
suppress all interference terms giving a per user ergodic capacity of:

Rpp(P) = En [log2

P
In+ HHVBDV{;DH‘ ]

where Vpp is the precoding matrix chosen by the BD procedure
given the channels of all the users. The expectation is carried out
over all channels H.

For finite rate feedback of B bits per user, multiuser interference
cannot be perfectly canceled and leads to additional noise power.
Taking this interference into account, the per user throughput is:

K
P H H
En,c |logy |In + . El ‘in V;ViHi|| )
J=Li7

P K
H H
IN+§Z HV,;VIH,

j=1

Rrp(P) = FEwu,c |:10g2

where the expectation is carried out over all channels as well as ran-
dom codebooks (7 is any user between 1 and K).
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Theorem 3.1. The rate loss per user incurred due to finite rate feed-
back with respect to perfect CSIT using Block Diagonalization can
be bounded from above by:

AR(P) = [Rpp(P)— Rrp(P)]
< N log,(1+ PD)
Proof. AR(P) = [Rpp(P)— Rrp(P)]

< FEm |:10g2

P
In + Ve HHVBDVgDH‘ } -

i:|+
K

> HIV,VIH,

J
j=1,57

P

EHi,C 1Og2

P
EHi,C 10g2 In + R

K
P
Y Bu,c | log, |In + 7 ;#. H'V,VIH,
L J=14137F

P - .
9 Bu,c |log, [In + EH? Zvjvf HA;
L JF#i
@ P(K —1) T Y\
< logy |In+ — P [H (Vjvj )H] M

Here, bound (a) follows by neglecting the positive semi definite
interference terms. Both Vpp and V; are uniformly distributed
and 1ndependent of H; which results in (b). We write H; HE
H;A; HY where H, forms an orthonormal basis for the sub%pace
spanned be the columns of H; and A; = diag[A1,..., An] are the
N non-zero unordered eigen values of HleI (assuming H; is of
rank N and diagonalizable) where E [A;] is M1y, and (c) follows.
The bound (d) follows from Jensen’s inequality due to the concavity

of log| - |. It can also be shown that Fg ¢ [I:If{ (V;vih) I:L} =
%, which provides a bound on the rate loss per user. D can be
upper bounded by D from (5) for large enough B. O

3.2. Increasing Feedback Quality

Theorem 3.2. In order to maintain a rate loss AR(P) of no larger
than log, (b) > 0 per user, it is sufficient for the number of feedback
bits per user to be scaled with SNR as:

Br XMNp,  N(M—N)log,(b¥ — 1) +

Nya—v)
N(M = N)log, {H] —log,(Cun)  (10)

This expression can be found by equating the upper bound on
rate loss with log, b and solving for B as a function of P. Solving
this numerically will yield the number of bits strictly sufficient for a
maximum rate loss of log2b. We assume that B is large enough to
neglect the exponential term in the expression for D from (5) which
yields the above approximation. The total contribution of the term
containing the logarithm of the gamma function is less than a bit and
it can usually be neglected. To maintain a system throughput loss of
M bps/Hz, which corresponds to an SNR gap of no more than 3 dB
with respect to BD with perfect CSIT, it is sufficient to scale the bits
as: N - N)

B =~
3

Pip —log,(Cun) (11)

The factor of N(M — N) suggests that the number of feed-
back bits per antenna reduce with increasing N. The number of bits
can grow very large for MIMO broadcast systems, and simulation
becomes a computationally complex task. However, utilizing the
statistics of random codebooks, systems with a small number of an-
tennas can be simulated in a reasonable amount of time. We present
simulation results for M = 8 and N = 2 in Figure 1(a) while
scaling the bits as per (11). As Theorem 3.2 only provides the suf-
ficient number of bits, this is a conservative strategy and the actual
SNR gap is found to be 2.3dB instead of 3dB. The simulations also
suggest that keeping the number of bits fixed will result in rate loss
which increases with SNR. Similar results are presented in Figure
1(b) for an N = 3 system.

4. ZERO FORCING VS. BLOCK DIAGONALIZATION

Zero forcing is an even simpler strategy than BD, and it is important
to compare the performance of these two schemes under the presence
of limited feedback. Zero forcing for a MIMO broadcast system with
K users and N antennas per user is equivalent to a KN = M user
system with a single antenna per user. The feedback scaling law for
such a system is derived in [5] to be:

o M D gy, (12)
to maintain an SNR gap of no more than 3 dB with respect to ZF
under perfect CSIT conditions. In general, BD achieves a higher
sum rate than ZF with perfect CSIT where the rate gap is Klogz(e)
Z;V . =1 [8] at high SNR. In order to compare the number of bits
required for BD and ZF under imperfect CSIT and finite rate feed-
back, it is necessary to fix a common target rate. The bits required
per user for ZF must also be multiplied by N for fair comparison.
By setting b = 27972 in (10) where R, is the per user rate gap
between BD and ZF with perfect CSIT and R the target per user rate
loss for the ZF system, we can compare the sufficient number of bits
required to achieve the same sum rate for both strategies. For exam-
ple, R = 1 for a 3 dB target and this suggests a bit savings of 20%
foran M = 6, N = 2 system, and 25% for an M = 9, N = 3
system with BD. The scaling law in Theorem 3.2 is however highly
conservative for large b, and though it is possible to see that BD has
a clear advantage in terms of the sufficient number of bits required,
it is somewhat underestimated. If a ZF system is scaled to maintain
a 3dB SNR gap relative to perfect CSIT and the number of feedback
bits for BD is numerically determined to achieve the same sum rate,
bit savings are about 40-50% for an M = 6, N = 2 system.

5. QUANTIZING THE CHANNEL

The scaling law in Section 3.2 was derived considering random code-
books, which are impractical for real world applications. Although
vector quantization codebooks can be designed for more practical
systems it is likely to require very high complexity due to the large
number of bits at each mobile. It is thus worthwhile to investigate
low complexity scalar quantization schemes. We believe that simple
scalar quantization methods are capable of achieving the same bit
scaling rate as random codes, though they will incur a constant rate
loss.

The scalar quantization scheme is first presented for MISO sys-
tems (based on the idea in [9]). A complex channel vector H; =
[Hi,...,Hy]" € CM*! s first divided by one of its elements, say
H,, toyield M —1 complex elements. The phase of each of these el-
ements is quantized separately and uniformly in the interval [—m, 7].

II-15



The inverse tangents of the magnitudes, for example tan™" ( Igﬂ ) s
us

are quantized uniformly in the interval [0, 5]. Nonuniform quan-
tization based on the distribution of these random variables is also
possible, but (sub-optimal) uniform quantization appears to be suf-
ficient for the number of feedback bits to scale linearly with SNR
with the same slope as with random codebooks. The total number of
bits available to a user is assumed to be distributed equally among
the phases and magnitudes of the M — 1 elements as far as possible,
and the remaining bits are randomly assigned.

For MIMO systems, this is generalized to quantizing the mag-
nitude and phase (in the same manner) of the lower (M — N) x N
entries of the matrix H;([I1 | Z1]JH;) . Iy is the N x &L identity
matrix and Z; the N x % Zero matrix.

Although we do not offer an analytical proof that this scheme
achieves the same bit scaling rate as random codebook quantization,
we present simulation results that certainly suggest this. The bits
for scalar quantization are scaled according to Equation (12) for an
M = 6, N = 1MISO system (Figure 2). This maintains a constant
gap with the perfect CSIT curve, although there is a 2.7 dB SNR loss
with respect to random codebook quantization. More sophisticated
scalar quantization methods may be able to reduce this gap as well,
which indicates that simple scalar quantization schemes could per-
form quite well. Similar results for MIMO systems are presented in
Figures 1(a) and 1(b) with 4 and 2 users respectively.
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