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ABSTRACT
In this paper, we present a user selection scheme with a fairness
constraint when zero-forcing beamforming (ZFBF) transmission is
employed in a multiple-input multiple-output (MIMO) broadcast
channel. This problem can be reduced to the maximization of a
weighted sum rate with a power constraint. In this paper, we rst
derive a lower bound on the weighted sum rate. Roughly speaking,
this bound is inversely proportional to the Frobenius norm of the
inverse of the weighted composite channel matrix. We then present
a greedy algorithm to select the users that maximize this lower
bound, using the same technique in [1]. Finally, we show that this
approach achieves the same scaling law as DPC does as presented
in [2]. Simulation suggests that this method achieves comparable
or better performance than most existing schemes in the moderate
to high SNR realm with comparable complexity.

Index Terms— MIMO systems, zero-forcing beamforming,
broadcast channel, user selection

I. INTRODUCTION
For multiple input multiple output (MIMO) broadcast channels,

where the access point (AP) is equipped with M transmit antennas
and each of the K ≥ M users has a single receive antenna,
zero-forcing beamforming (ZFBF) proposed in [3] has attracted
considerable attention in recent years due to its relative simplicity
compared to dirty paper coding (DPC) [4]. By inverting the channel
matrix at the transmitter side, a number of orthogonal channels
can be created to support independent data streams simultaneously
without the interference between different users. Since the number
of users ZFBF can optimally support at the same instant is no larger
than the number of transmit antennas, user scheduling is always a
must when the number of users is large. It has been demonstrated
that, coupled with user selection, ZFBF attains the full multiplexing
gain M and the multiuser diversity log log K asymptotically [5]–
[7], which is precisely what DPC can achieve [2].
In practical wireless systems, fairness among all the users is

always an important issue that deserves full attention. One criteria
of this fairness is the average throughput of each user [8]. On
the other hand, in packet-based wireless networks, each user is
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often associated with a queue where the packets for that user arrive
randomly. In [9], the network capacity region is de ned as the
region of stabilizable input data rates. This region can be achieved
by the strategy of maximum-weight matching where the weights are
related to queue sizes. User selection for MIMO broadcast channels
with a fairness constraint has been addressed in [6], [10].
Since an exhaustive search among all the channel vectors of all

the users is infeasible, in this paper, we present a user selection
scheme with a fairness constraint where the ZFBF transmission is
assumed. We rst derive a lower bound on the weighted sum rate
maximization problem. Roughly speaking, this bound is inversely
proportional to the Frobenius norm of the inverse of the weighted
channel matrix. We then present a greedy algorithm to choose the
users that maximize this lower bound, using the same technique in
[1]. Finally, we show that this approach achieves the same scaling
law as DPC does [2].
The organization of this paper is as follows. Section II gives the

system model. Section III provides with some background on ZFBF
and user selection with a fairness constraint. Section IV presents the
user selection algorithm and its performance analysis. Simulation
results are given in Section V. Section VI concludes the paper.
We use lowercase boldface letters to denote vectors and upper-

case bold letters to denote matrices. ‖ · ‖ denotes the norm of a
vector, and ‖ · ‖F denotes the Frobenius norm of a matrix. (·)T

denotes matrix transposition, (·)H denotes the matrix Hermitian
transpose, E{·} denotes expectation, and | · | denotes the absolute
value.

II. SYSTEM MODEL
We assume the base station is equipped with M antennas, each

user has one antenna, and K > M users are receiving signals from
the base station. The received signal yk at user k is determined by

yk = hkx + nk, (1)

for k = 1, . . . , K , where x ∈ C
M×1 is the transmitted signal,

hk ∈ C
1×M represents the multiple-input-single-output (MISO)

channel from the base station to user k, and {nk} are i.i.d complex
Gaussian noise terms with unit variance. The power constraint for
the input signal is E[xHx] = P . We assume that the transmit
antennas and users are suf ciently spaced apart such that the
entries of hk, for k = 1, . . . , K , can be modeled as a set of
i.i.d. zero-mean circularly symmetric complex Gaussian random
variables. Without loss of generality, we assume that these entries
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have unit variance (i.e., hk is distributed as CN (0, I)) and that
the channel is constant for multiple transmission epochs before
changing independently. Throughout this paper, we assume that
the base station has perfect channel state information (CSI) of all
of the downlink channels hk, k = 1, . . . , K . However, each user
only has the CSI of its own downlink channel and does not know
the CSI of the downlink channel of other users. Furthermore, there
is no collaboration between users in decoding the signal.

III. BACKGROUND
III-A. Zero-Forcing Beamforming for the Broadcast Channel
Consider a subset of users A, where A ⊂ {1, . . . , K} and |A| =

n ≤ M . Denote the channel vectors of those users as hi1 , . . . , hin .
Stacking them on top of each other, we get the n × M composite
channel matrix

HA =
[
hT

i1 , · · · , hT
in

]T

.

Let the columns of the Moore-Penrose inverse of HA be
v1, . . . , vn, i.e.,

H†
A = [v1, · · · , vn] .

Denote
ṽk =

vk

‖vk‖ .

We can use {ṽk} as beamforming vectors for the selected users.
Speci cally, the transmitted signal x is constructed as

x =

n∑
k=1

√
Pik ṽksik . (2)

Assuming the data streams for different users are independent
to each other, the power constraint E

[
xHx

]
= P reduces to

n∑
k=1

Pik = P . Note that

hik ṽj =

{ 1
‖vk‖ k = j

0 k �= j
.

In effect, using ZFBF decomposes the MIMO broadcast channel
into n subchannels without cross channel interference. Additionally,
the kth channel has an equivalent channel gain of 1

‖vk‖ .
The received signal for user ik is

yik = hikx + nik

=

√
Pik

‖vk‖ sik + nik . (3)

The sum rate for the set A is

RBF (A) = max
n∑

k=1
Pik

=P

n∑
k=1

log2

(
1 +

Pik

‖vk‖2

)

= max
n∑

k=1
Pik

=P

n∑
k=1

log2 (1 + Pikγik ) , (4)

where γik = 1
‖vk‖2 is the SNR of the kth subchannel with unit

power. The optimal power allocation that achieves the maximum
sum rate is given by a water- lling scheme,

Pik =

(
μ − 1

γik

)+

=
(
μ − ‖vk‖2)+ (5)

and
n∑

k=1

Pik = P, (6)

where (z)+ denotes max(z, 0) and μ is called water level.

III-B. User Selection with ZFBF
Most previous approaches to user selection with ZFBF can be

formulated as follows. Among the K users, nd a subset of users
A ⊂ {1, . . . , K} such that |A| ≤ M and

RBF (A) = max
A′⊂{1,...,K},|A′|≤M

RBF (A′).

However, in practical situations, it is more suitable to impose
a proportional fairness constraint [8] or queue stability constraint
[10]. Note that both proportional fairness and queue stability are
de ned over a certain time interval. Both of these two problems
can be generalized to the weighted sum-rate maximization problem
[6]

max
A′⊂{1,...,K},|A′|≤M

max∑
k∈A′

Pk(t)=P

∑
k∈A′

αk(t)RBF
k (A′, t) (7)

where the αk(t)’s are the weights and

RBF
k (A′, t) = log2 (1 + Pk(t)γk(t))

is the rate for user k at time instant t when the subset A′ is
selected. For fairness, αk(t) can be chosen to be the reciprocal
of past throughput of user k [8] or the queue length of user k [10].
For notational simplicity, we can drop the time index, and (7) is

reduced to

max
A′⊂{1,...,K},|A′|≤M

max∑
k∈A′

Pk=P

∑
k∈A′

αk log2

(
1 +

Pk

‖vk‖2

)
. (8)

IV. THE ALGORITHM
IV-A. A Lower Bound on the Sum Rate
The main result in this section is the following theorem.

Theorem 1: Given a set A = {i1, . . . , in} ⊂ {1, 2, . . . , K} of
users, where n ≤ M , the weighted ZFBF sum rate RBF(A; PA)
with power allocation PA = {Pi1 , . . . , Pin} and weights
{αi1 , . . . , αin} has a lower bound, that is,

RBF(A; PA) ≥ α log2

(
1 +

α

‖H̃†
A‖2

F

)
, (9)

where α =
n∑

k=1

αik and

H̃A = diag

{√
Pi1

αi1

, . . . ,

√
Pin

αin

}
HA =

⎡⎢⎢⎢⎢⎣
√

Pi1
αi1

hi1

...√
Pin
αin

hin

⎤⎥⎥⎥⎥⎦
This result is immediate from the two lemmas that follow.
Lemma 1: The weighted arithmetic mean is greater than or equal
to the weighted geometric mean and the weighted geometric mean
is greater or equal to the weighted harmonic mean, i.e.,

Aw(a1, a2, . . . , an) ≥ Gw(a1, a2, . . . , an)

≥ Hw(a1, a2, . . . , an). (10)
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Lemma 2: For the weighted harmonic mean Hw(a1, . . . , an) , we
have

Hw(a1 + c, a2 + c, . . . , cn + c) ≥ c + Hw(a1, a2, . . . , an) (11)

for any constant positive number c.
Sketch of proof: In fact, letH(x) = Hw(a1+x, a2+x, . . . , an+x).
We can prove

H ′(x) =
dH

dx
≥ 1 (12)

for all positive x. Applying the mean value theorem yields the
lemma. �
From the proof, we have the following corollaries.

Corollary 1: Given a set A = {i1, . . . , in} ⊂ {1, 2, . . . , K} of
users, where n ≤ M , the weighted ZFBF sum rate, which is
maximized over all possible power allocations, has a lower bound
for all power allocation schemes given by

RBF (A) ≥ α log2

(
1 +

αP

n‖Ĥ†
A‖2

F

)
(13)

where
ĤA = diag

{
1√
α1

, . . . ,
1√
αn

}
HA.

Note that when αi = 1 for i = 1, . . . , n, we have following
corollary.
Corollary 2: Let αi = 1 for i = 1, . . . , n and the smallest singular
values of HAHH

A be λmin, then

RBF(A) ≥ n log2

(
1 +

P

‖H†
A‖2

F

)
(14)

≥ n log2

(
1 +

P

n
λmin

)
. (15)

IV-B. The MFNPI Algorithm for User Selection
In [11], the authors propose to perform user selection based on

maximizing the Frobenius norm of the composite channel matrix.
However, Corollary 1 suggests it is more justi ed to work on the
pseudo-inverse of the weighted composite channel matrix ĤA. In
other words, it provides us with a way to do user selection, that
is, to nd the set of users that minimize the Frobenius norm of
the weighted composite channel matrix. This method involves the
calculation of the inverse of the weighted composite channel matrix.
As proposed in [1], there is an ef cient way to calculate this in a
sequential manner. In the remainder of this section, for simplicity,
we only consider the second method under the condition where
αi = 1 for i = 1, . . . , K . With this condition, we develop a user
selection algorithm based on Minimization of the Frobenius Norm
of the Pseudo-Inverse (MFNPI) of the composite channel matrix.
We can show that this algorithm achieves the same scaling laws as
DPC.
Theorem 2: For M and P xed, the sum-rate of the MFNPI
algorithm scales as

lim
K→+∞

E{RMFNPI}
M log log K

= 1 (16)
Sketch of proof: The proof uses (14) and the fact that the distribution
of the smallest eigenvalue of a Wishart matrix is exponentially
distributed [12]. For a sequence of exponential random vari-
ables {X1, . . . , XK} that satis es certain dependency constraints,
maxi=1,...,K Xi still scales like log K whenK is large [13]. On the
other hand, the sum rate of any transmission scheme for broadcast

channels is bounded by the DPC sum rate which obeys the scaling
law of M log log K. �

IV-C. Procedure
In this section, the procedure of the MFNPI algorithm is in-

cluded.
• Step 1: Initialization: Find the channel vector that has the
largest norm, i.e.,

j1 = arg max
i=1,...,K

‖hi‖2.

Perform the initialization as

J ← j1,

Ω ← {1, . . . , j1 − 1, j1 + 1, . . . , K}.
where J contains the indices of the selected users and Ω is
termed as candidate set which contains the indices of the users
that have not been selected and are eligible for selection.

At the mth iteration:
• Step 2: Find the user jm ∈ Ω, such that it minimizes the
Frobenius norm of the inverse of the composite channel matrix
for the users in J∪{jm}. In the process, we use the technique
in [1] to calculate the inverse of the composite channel matrix:

J ← J ∪ {jm},
Ω ← Ω − {jm},
m = m + 1.

if n < M , go to Step 2. Otherwise, go to Step 3.
• Step 3: Perform water- lling on the set of selected users.

IV-D. Complexity Analysis
As in [1], the sequential procedure to calculate the Penrose-

Moore inverse of a matrix dominates the computation. So the
complexity of MFNPI should be also on the order of KM3.
However, for sequential water- lling (SWF), as well as in [14],
for each user at iteration n, there are n logarithm operations. In
total, if not considering search space pruning, there are roughly
M∑

n=2

Kn ≈ KM2 logarithm operations. On the contrary, for

MFNPI, there is no logarithm operation involved. This results in
signi cant complexity reduction.

V. SIMULATION RESULTS
In this section, the performance of the MFNPI algorithm for the

equal-weight case is compared with the SWF algorithm [1] and the
semiorthogonal user selection (SUS) algorithm [6].
Figure 1 shows that the resultant sum rate of SWF, MFNPI, SUS

and complete search ZFBF versus different SNRs. One can see at
low SNR, the MFNPI algorithm achieves a lower sum rate than
SWF. However, when the SNR is moderately large, e.g., 10dB,
the performance of MFNPI and SWF is very close. Moreover,
comparing (a) and (b), one can see that at lower SNR, the MFNPI
algorithm will outperform the SUS algorithm when the number of
users increases.
In Figure 2, the ZFBF sum rate of SWF, MFNPI, SUS and

complete search ZFBF are plotted against different number of
users. Two transmit SNRs, 2dB and 20dB, are considered in this
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simulation. One can see that at high transmit SNR (20dB), MFNPI
and SWF have close performance and achieve a sum rate around
3bps higher than that of the SUS algorithm. When the transmit
SNR is reduced to 2dB and the number of users is small, one can
see that the MFNPI algorithm performance worse than the SUS.
However, it outperforms SUS and eventually approaches the SWF
algorithm as the number of users increases.
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(b) Sum rate vs. SNR for 32 users

Fig. 1. The sum rate of SWF, MFNPI, SUS, and best sum rate of
ZFBF with different transmit SNR. There are 4 transmit antennas.
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Fig. 2. The ZFBF sum rate of SWF, MFNPI, SUS, and the complete
search with different different number of users. There are 4 transmit
antennas.

VI. CONCLUSION
In this paper, assuming ZFBF transmission, we proposed a new

user selection method to maximize the weighted sum rate based

on minimizing the Frobenius norm of the inverse of the composite
channel matrix. At moderate to high SNR, the performance of this
method is very close to SWF [1] which has the same performance
as the greedy method proposed in [14] but with less computation.
As the number of users increase, it exhibits the same scaling law
of optimal DPC.

VII. REFERENCES
[1] J. Wang, D. J. Love, and M. D. Zoltowski, “User selection

for MIMO broadcast channel with sequential water- lling,” in
Allerton Conference on Communication, Control and Comput-
ing.

[2] M. Sharif and B. Hassibi, “A comparison of time-sharing, dpc,
and beamforming for MIMO broadcast channels with many
users,” IEEE Trans. Commun., submitted.

[3] G. Caire and S. Shamai(Shitz), “On the achievable throughput
of a multiantenna Gaussian broadcast channel,” IEEE Trans.
Inform. Theory, vol. 49, no. 7, pp. 1691–1706, July 2003.

[4] M. Costa, “Writing on dirty paper,” IEEE Trans. Inform.
Theory, vol. IT-29, no. 3, pp. 439–441, May 1983.

[5] T. Yoo and A. Goldsmith, “sum-rate optimal multi-antenna
downlink beamforming strategy based on clique search,” in
IEEE Global Telecommunications Conference, vol. 3, Nov.-
Dec. 2005.

[6] ——, “On the optimality of multi-antenna broadcast schedul-
ing using zero-forcing beamforming,” IEEE J. Select. Areas
Commun., vol. 24, pp. 528–542, Mar. 2006.

[7] A. Bayestech and A. K. Khandani, “On the user selection for
MIMO broadcast channels,” in Proceedings of International
Symposium on Information Theory (ISIT), Sept. 2005, pp.
2325 – 2329.

[8] P. Viswanath, D. Tse, and R. Larois, “Opportunistic beam-
forming using dumb antennas,” IEEE Trans. Inform. Theory,
vol. 48, pp. 1277–1294, June 2002.

[9] L. Tassiulas and A. Ephremides, “Stability properties of
constrained queueing systems and scheduling policies for
maximum throughput in multihop radio networks,” IEEE
Trans. Automat. Contr., vol. 37, no. 12, pp. 1936–1948, 1992.

[10] C. Swannack, E. Uysal-Biyikoglu, and G. Wornell, “Low
complexity multiuser scheduling for maximizing throughput
in the MIMO broadcast channel,” in Allerton Conference on
Communication, Control and Computing, Oct. 2004.

[11] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, and B. L.
Evans, “Low complexity user selection algorithms for mul-
tiuser MIMO systems with block diagonalization,” IEEE
Trans. Signal Processing, vol. 54, no. 9, pp. 3658 – 3663,
Sept. 2006.

[12] A. Edelman, “Eigenvalues and condition numbers of random
matrices,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, May 1989.

[13] M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and
related properties of random sequences and processes. New
York: Springer-Verlag, 1983.
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