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† Centre Tecnològic de Telecomunicacions de Catalunya, Barcelona, Spain
� University of Southern California, Los Angeles, CA, USA

E-mail: mari.kobayashi@cttc.es, caire@usc.edu

ABSTRACT
We study the maximization of the weighted sum rate in Gaussian
multi-input multi-output OFDMbroadcast channel under a total power
constraint. This problem is motivated by adaptive resource alloca-
tion policies in a multi-carrier wireless system with multiple anten-
nas at the base station. We propose a iterative water lling algorithm
based on dual decomposition. Two decompositions are considered,
one in subcarrier domain and another in both subcarrier and user
domain. We show that both decompositions reduce to an identical
problem that can be solved by multiuser water lling approach simul-
taneously for all subcarriers. A master problem is solved iteratively
to achieve the total power constraint by a simple bisection method.
Numerical examples show that our proposed algorithm converges
much faster than steepest ascent algorithm and makes convergence
almost independent of a number of subcarriers and antennas.

Index Terms— dual decomposition, convex optimization, OFDM,
weighted sum rate, iterative algorithms.

1. MOTIVATION

We consider the downlink of a wireless system where the transmitter
equipped withM antennas servesK receivers with a single antenna
each. Assuming a frequency selective fading channel, we apply
orthogonal frequency division multiplexing (OFDM) with N sub-
carriers to convert the frequency selective channel into N parallel
frequency- at channels. The corresponding system is modeled as
the discrete Gaussian multiple input multiple output OFDM broad-
cast channel (MIMO-OFDM BC), given by

yk,n = h
H
k,nxn + nk,n (1)

where xn ∈ C
M denotes the transmit signal vector on subcarrier

n, hk,n ∈ C
M denotes the channel complex vector of user k on

subcarrier n, and {nk,n} is an independent identically distributed
(i.i.d.) sequence of AWGN ∈ N (0, 1). The input is subject to the
total power constraint

PN

n=1 E[||xn||
2] ≤ P . The dual uplink chan-

nel is the MIMO-OFDM multiple access channel (MAC) where K
single-antenna transmitters communicate with a receiver equipped
withM antennas. The received signal on subcarrier n is given by

rn =

KX
k=1

hk,nsk,n + wn (2)

where sk,n denotes the symbol of user k on subcarrier n, wn is
AWGN with i.i.d. components ∼ CN (0, 1), and the same total
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power constraint is imposed, i.e.
P

k

P
n

E[|sk,n|
2] ≤ P . From the

standard results of the uplink-downlink duality [1, 2], it is straight-
forward to show that the capacity regions of the MIMO-OFDM BC
(1) and of the MIMO-OFDMMAC (2) coincide and are given by

C(H; P ) =
[

P
k

P
n pk,n≤P

{R ∈ R
K

: ∀K ⊆ {1, . . . , K}

Rk ≤
1

N

NX
n=1

log

˛̨̨
˛̨I +

X
k∈K

hk,nh
H
k,npk,n

˛̨̨
˛̨} (3)

where H denotes the sequence of the channel vectors {hk,n} and
pk,n denotes the power of user k on subcarrier n. For later use, we let
pn = (p1,n, . . . , pK,n)T denote the user power vector on subcarrier
n. In this work we assume perfect channel state information at the
transmitter (and receivers). Let us consider a set of uplink powers
{pk,n} satisfying the total power constraint and the decoding order
π (where π = (π1, . . . , πK) denotes a permutation of {1, . . . , K}
such that user πK is decoded rst and π1 is decoded last). With this
choice, the rateK-tuple given by

Rπk
=

1

N

NX
n=1

log

˛̨̨
I +

Pk

j=1 hπj ,nhH
πj ,npπj,n

˛̨̨
˛̨̨
I +

Pk−1
j=1 hπj ,nhH

πj ,npπj ,n

˛̨̨ (4)

for k = 1, . . . , K is achievable in the uplink by successive de-
coding. Then, there exists a set of powers {qk,n}, also satisfyingP

k

P
n

qk,n = P , such that the same rateK-tuple (4) is achievable
in the downlink by successive “Dirty-Paper” encoding, by encoding
the users in the reverse order. In the following, we use that duality
to cast a downlink problem into a uplink problem, easier to handle.

We address the weighted sum rate maximization in the MIMO-
OFDM BC, given by

max

KX
k=1

wkRk, subject toR ∈ C(H; P ) (5)

where {wk} denotes the sequence of time-varying positive weights
and {Rk} denotes the sequence of instantaneous user rates. This
problem is motivated by adaptive resource allocation policies in typ-
ical downlink scenarios such as a queued downlink with random ar-
rival (see [3] and references therein). We aim to propose an ef cient
and fast algorithm for the problem (5) via dual decomposition. Dual
decomposition is a useful tool that can be applied to a convex prob-
lem with a coupled constraint connecting variables. Although any
convex optimization tool can be applied to our problem, we propose
an iterative algorithm that ef ciently exploits the problem structure
and enables parallel implementation. Moreover, numerical exam-
ples show that the proposed algorithm converges much faster than
steepest ascent algorithm.
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2. ITERATIVEWATERFILLING ALGORITHM

We apply the results of [4] stating that the solution of (5) is al-
ways found in the set of successively decodable rate points if the
decoding order sorts the weights in non-increasing order such that
wπ1

≥ wπ2
≥ · · · ≥ wπK

. Since the decoding order is xed by
the weights, without loss of generality we can consider πk = k, i.e.,
users are decoded in the order K ( rst), K − 1, . . . , 1 (last). Then
the maximization problem (5) reduces to :

maximize
KX

k=1

Δk

NX
n=1

log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨ (6)

subject to
X

k

X
n

pk,n ≤ P

pk,n ≥ 0,∀k, n

where we let Δk = wk − wk+1 and we de ne wK+1 = 0. Notice
that by de nition of the decoding order, we have Δk ≥ 0. We re-
mark that the problem (6) is an extension of the weighted rate sum
maximization for the MIMO-BC addressed in [3] to a multi-carrier
system. The weighted sum rate maximization in MIMO-OFDM BC
is addressed in [5] although only a solution for the sum rate maxi-
mization is provided. Due to the total power constraint, a direct so-
lution to (6) seems non-trivial since it requires joint optimization of
powers over users and subcarriers. Hence, we follow the approach of
[6] based on dual decomposition to break the total power constraint
and decompose the original problem (6) into a set of subproblems.
On top of subproblems, we solve a so-called master problem to sat-
isfy the total power constraint. The dual method has been applied to
wired multicarrier systems (see for example [7]). In the following,
we consider two different decompositions and show that the both
decompositions turn out to yield the same iterative algorithm.

2.1. Dual decomposition in subcarrier domain

By introducing a set of N auxiliary variables {C1, . . . , CN}, we
rewrite the original problem (6) as follows.

maximize
KX

k=1

Δk

NX
n=1

log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨

subject to
KX

k=1

pk,n ≤ Cn, n = 1, . . . , N

NX
n=1

Cn ≤ P

pk,n ≥ 0,∀k, n (7)

We form the Lagrangian of the new problem (7) with respect to the
coupled constraint

PN

n=1 Cn ≤ P .

L(p1, . . . ,pN , C1, . . . , CN , μ) (8)

=
KX

k=1

Δk

NX
n=1

log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨− μ

 
NX

n=1

Cn − P

!

Let us de ne the master problem as

min
μ≥0

G1(μ) (9)

where

G1(μ) = max
{pn,Cn}

N
n=1

L(p1, . . . ,pN , C1, . . . , CN , μ) (10)

where the constraints are
P

k
pk,n ≤ Cn and pk,n ≥ 0, ∀k for each

n. Notice that the dual function G1(μ) is the pointwise maximum of
a family of af ne functions of μ, hence it is a convex function (see
for example [8]).

Decoupled subproblems First, we have to nd G1(μ) for a xed
μ. Due to its separable structure, the dual function (8) can be decom-
posed into N subproblems and can be computed simultaneously for
N subcarriers. This is very appealing because it enables a parallel
implementation. We solve the following subproblem for each n.

maximize
KX

k=1

Δk log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨− μCn

subject to
KX

k=1

pk,n ≤ Cn

pk,n ≥ 0,∀k (11)

The Lagrangian of the n-th subproblem is given by

Ln(pn, Cn, μ, νn) =
KX

k=1

Δk log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨

−μCn − νn

 
KX

k=1

pk,n −Cn

!

where νn denotes a dual variable associated with the constraint
P

k
pk,n ≤

Cn. Since each subproblem is a convex optimization problem, the
KKT conditions are necessary and suf cient for the optimality [8].
By letting ∂Ln/∂pk,n = 0 and ∂Ln/∂Cn = 0, we obtain KKT
conditions given by

∂Ln

∂pk,n

=
KX

j=k

Δj

hH
k,nΣ−1

k,j,nhk,n

1 + pk,nhH
k,nΣ−1

k,j,nhk,n

− νn = 0, ∀k

∂Ln

∂Cn

= νn − μ = 0

where we de ne the covariance matrix for each k = 1, . . . , K, j ≥
k and for n = 1, . . . , K

Σk,j,n = I +

jX
i=1,i�=k

hi,nh
H
i,npi,n

which is the covariance of the interference plus noise experienced by
user k on subcarrier nwhile users fromK to j+1 have already been
decoded and subtracted from the received signal, in the successive
decoder. By combining the both KKT conditions, we obtain

KX
j=k

Δj

hH
k,nΣ−1

k,j,nhk,n

1 + pk,nhH
k,nΣ−1

k,j,nhk,n

= μ ≥ 0, ∀k, n (12)

Unfortunately, it is not possible to solve (12) for a given μ in
a closed form. Hence, we resort to an iterative algorithm and in
particular apply the algorithm [3] to nd the solution of the subprob-
lem. Let pn(μ) denote the solution of the n-th subproblem for a
given μ. While in [3] the algorithm determines μ to impose the total
power constraint at each iteration, here we nd pn(μ) for a xed
μ imposed by the master problem. Consequently, we obtain a set
of solutions {pn(μ), Cn(μ)}N

n=1 where Cn(μ) =
P

k
pk,n(μ) is

the power on subcarrier n corresponding to a xed μ. Since Cn is
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not a constraint but a optimization variable in the subproblem (11),
user powers p1,n, . . . , pK,n of subcarrier n can be optimized sequen-
tially one user after another. Namely, the objective function is opti-
mized over pk,n while treating p1,n, . . . , pk−1,n, pk+1,n, . . . , pK,n

xed. The algorithm updates {p1,n}
N
n=1, . . . , {pK,n}

N
n=1 and then

{p1,n}
N
n=1 . . . until the solution of (10) is converged.

Master problem We have to solve the master problem (9) on
top of the N subproblems. Since the master problem is always con-
vex, any optimization method (interior-point, subgradient) can be
applied. In our case, similar to the dual decomposition for sum rate
maximization of MIMO-BC in [9], a simple bisection method is suf-
cient because the search is one-dimensional. The Lagrangian vari-
able μ can be interpreted as a water level that should be adjusted
according to whether the total power constraint is satis ed or not.
Let gk,n(pk,n) denote the LHS of the KKT conditions (12)

gk,n(pk,n) =
KX

j=k

Δjαk,j,n

1 + pk,nαk,j,n

where we let αk,j,n = hH
k,nΣ−1

k,j,nhk,n. As remarked in [3], the
above function is a monotonically decreasing function of pk,n when
treating {αk,j,n} xed. By de ning the inverse function of gk,n(pk,n) =
μ such that g−1

k,n(μ) = pk,n, the total power corresponding to the
water level μ is given by the sum over all users and subcarriers, i.e.

NX
n=1

Cn(μ) =
NX

n=1

KX
k=1

g−1
k,n(μ) (13)

Noticing that this function is a monotonically decreasing function of
μ for 0 ≤ μ ≤ maxk,n gk,n(0), the water level should be adjusted
as follows : increase μ if

PN

n=1 Cn(μ) ≥ P and decrease μ ifPN

n=1 Cn(μ) ≤ P .
Finally, by taking into account the outer optimization with re-

spect to the water level μ, we propose the following algorithm to
maximize the weighted sum rate in the MIMO-OFDM BC.

Iterative water lling algorithm for the weighted sum-rate
maximization in MIMO-OFDM BC.
1. InitializeP(0) = 0, {α(0)

k,j,n} and set the initial water interval
[μ

(0)
min, μ

(0)
max] = [0, maxk,n g

(0)
k,n(0)].

2. Water level set : at iteration l, let μ(l) = (μ
(l)
min + μ

(l)
max)/2

3. Inner iterationm : repeat until the optimal solution of (10) is
converged.
For k = 1, . . . , K,

• Compute {α(l,m)
k,j,n} for ∀n, j ≥ k

• Multiuser water lling step: for all n nd p
(l,m)
k,n corre-

sponding to a water level μ(l), solution of

μ(l) =
KX

j=k

Δj

α
(l,m)
k,j,n

1 + p
(l,m)
k,n α

(l,m)
k,j,n

(14)

End
4. Water interval update : If

P
n

P
k

p
(l,∞)
k,n (μ(l)) > P then set

μ
(l+1)
min = μ(l), else set μ(l+1)

max = μ(l)

5. Repeat 2-4 until a desired accuracy on |μ(l)
max−μ

(l)
min| is reached

Notice that this algorithm is a generalization of Yu’s algorithm [9]
that maximizes the sum rate in MIMO-BC to the weighted sum rate
in a multicarrier MIMO-BC, for the case of a single receive antenna.

2.2. Dual decomposition in subcarrier/user domain

Here we consider the dual decomposition not only in the subcarrier
but also in the user domain. Let us introduce KN new variables
Ck,n for k = 1, . . . , K, n = 1, . . . , N . Then, the original problem
(6) can be expressed as

maximize
NX

n=1

KX
k=1

Δk log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨ (15)

subject to 0 ≤ pk,n ≤ Ck,n, ∀n, k

NX
n=1

KX
k=1

Ck,n ≤ P

We form the Lagrangian with respect to the coupled constraint such
that

L({pk,n}, {Ck,n}, μ) (16)

=
NX

n=1

KX
k=1

Δk log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨− μ(

NX
n=1

KX
k=1

Ck,n − P )

Let us de ne the dual objective as

G2(μ) = max
{pk,n,Ck,n},∀n,k

L({pk,n}, {Ck,n}, μ) (17)

where the constraints in the maximization are 0 ≤ pk,n ≤ Ck,n for
all k and n. The master problem is given by

min
μ≥0

G2(μ) (18)

Again noticing that the dual objective can be decoupled intoN sub-
problems, the evaluation of G2(μ) for a given μ reduces to solving
the following subproblem for each n

maximize
KX

k=1

Δk log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨− μ

KX
k=1

Ck,n

subject to 0 ≤ pk,n ≤ Ck,n, ∀k

The Lagrangian corresponding to the n-th subproblem is given by

L̃n(pn, {Ck,n}, {βk,n}) =
KX

k=1

Δk log

˛̨̨
˛̨I +

kX
j=1

hj,nh
H
j,npj,n

˛̨̨
˛̨

−μ

KX
k=1

Ck,n −
KX

k=1

βk,n (pk,n − Ck,n)

where βk,n is a dual variable associated with the constraint pk,n ≤

Ck,n. By letting ∂L̃n/∂pk,n = 0 and ∂L̃n/∂Ck,n = 0, we obtain
for all k, n

∂Ln

∂pk,n

=

KX
j=k

Δj

hH
k,1Σ

−1
k,j,nhk,n

1 + pk,nhH
k,nΣ−1

k,j,nhk,n

− βk,n = 0

∂Ln

∂Ck,n

= −μ + βk,n = 0

Combining both equations, we obtain exactly the same KKT condi-
tions (12) as for the decomposition in subcarrier domain. This means
that the two decompositions reduce to the identical problem that can
be solved by the same algorithm provided before.
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Fig.1 Convergence behavior forM = 4, N = 64

3. NUMERICAL EXAMPLES

We evaluate the convergence behavior of the proposed algorithm.
For the sake of comparison, steepest ascent algorithm of [10] is also
considered. We consider four classes of weights such that w4/w1 =
32, w3/w1 = 16, w2/w1 = 8 and let K = 20. Fig. 1 shows the
convergence evolution forM = 4, N = 64 as a function of the total
number of iterations including the inner iterations for our proposed
algorithm. Fig. 2 and 3 show the same convergence evolution for
M = 8, N = 64 and for M = 4, N = 128 respectively. The
objective value is normalized so that the nal value should be one.
The channel is i.i.d. over antenna, user, subcarrier dimensions and
randomly generated (one realization). The CPU time in second as
well as the nal total power (only for our proposed algorithm) is
provided for a reference.

As observed, the both algorithms converge to the optimum with
a power accuracy smaller than 10−3 with respect to P = 10. While
the objective increases monotonically with steepest ascent algorithm,
the proposed algorithm requires the water level adjustment which
results in a jump in the objective between two consecutive outer it-
erations. It is found that our proposed algorithm converges much
faster than steepest ascent algorithm in terms of required CPU time.
Steepest ascent algorithm does not make use of a structure of the
convex problem and requires a line search of roughly 200 samples at
each iteration, which is computationally high. Comparing the three
gures, we remark that the convergence of our proposed algorithm
is almost insensitive to the number of antennas and of subcarriers
because it updates the powers of all subcarriers simultaneously for
a given user. On the other hand, steepest ascent algorithm updates
the best user/subcarrier combination at each iteration. As a result, its
convergence depends on the total number of active users with posi-
tive power over all subcarriers, which in turn depends on the number
of antennas and that of subcarriers.

In conclusions, our proposed algorithm yields extremely fast
convergence compared to steepest ascent algorithm and moreover
makes the convergence almost independent of the number of anten-
nas and the number of subcarriers.
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