
QUANTIZED FEEDBACK DESIGN FOR MIMO BROADCAST CHANNELS

Tùng T. Kim, Mats Bengtsson, and Mikael Skoglund

School of Electrical Engineering
Royal Institute of Technology, SE-10044 Stockholm, Sweden

e-mail: {tung.kim, mats.bengtsson, mikael.skoglund}@ee.kth.se

ABSTRACT

Low-rate feedback design for multiple-input multiple-output
broadcast channels is studied under a vector quantization frame-
work. Iterative algorithms are proposed to design the partial
feedback link, the scheduler, and the linear precoding code-
book. It is demonstrated that the gain due to multi-user diver-
sity can be signi cant even with heavily quantized channel
state information at the transmitter. Our results highlight the
potential of multi-user diversity, even with simple schemes
and extremely-low-rate feedback.

Index Terms— Fading channels, quantization, broadcast
channels, feedback communications, information rates.

1. INTRODUCTION

Recent advances show that with perfect channel state infor-
mation at the transmitter (CSIT), dirty-paper coding achieves
the whole capacity region of the multiple-input multiple-output
(MIMO) broadcast channels [1–4]. Such a non-linear cod-
ing approach is however complicated and furthermore, perfect
CSIT is generally very dif cult to obtain in practice. This mo-
tivates various work on broadcast channels with partial CSIT,
for example simple yet ef cient opportunistic approaches are
proposed and analyzed in [5, 6].

Opportunistic communication schemes normally rely on
feedback of the signal-to-noise ratio (SNR) or the signal-to-
interference-noise ratio (SINR), implicitly requiring a possi-
bly large amount of feedback. More explicit quantized feed-
back models are considered in e.g., [7]. Most previous work
focused on the multiple-transmit single-receive antenna case,
or on the asymptotic regime of a very large number of users.

In this work, we use tools in vector quantization to jointly
design the partial feedback link, the scheduler and the precod-
ing matrices in a broadcast channel. While vector quantiza-
tion is widely used in the feedback design for the single-user
case [8, 9], extending it to multi-user scenarios proved to be
dif cult due to its exponentially complexity as the number of
users increases. We therefore restrict our attention to a class
of schemes with linear precoding and single-user schedul-
ing using heavily quantized CSIT. Our results are not asymp-
totic, and the presented design technique can be applied to

any channel distribution.
The results demonstrate that signi cant gain compared to

the single-user case can be achieved even with heavily quan-
tized CSIT. The baseline scheme however requires exponen-
tial complexity in the number of users. We thus propose a
reduced-complexity scheme, which only requires a codebook
size that scales linearly as the number of users increases. Our
results highlight the potential of multi-user diversity, even
with simple schemes and extremely low feedback rate.

2. SYSTEM MODEL

Consider the discrete-time complex-baseband model of a mul-
tiple antenna broadcast channel with M users. The transmit-
ter has Nt antennas. For simplicity of notation, assume that
all users have the same number of receive antennas, Nr. As-
sume perfect channel state information at all receivers. Given
a channel realization Hk, user k employs an index mapping
Ik(Hk) from channel matrix to feedback index. Assume ik =
Ik(Hk) takes values on {1, . . . , K} where K is a xed inte-
ger, referred to as the resolution of the feedback link. All
users have the same feedback resolution K. All feedback in-
dices from the users are sent back to the transmitter via noise-
less, zero-delay dedicated feedback links.

Upon receiving the set of indices iM1
Δ= {i1, . . . , iM}, the

transmitter employs a scheduler J (iM1 ), i.e., a mapping from
the tuple iM1 to an integer in {1, . . . , M} indicating which
user is served. We exclusively focus on single-user schedul-
ing. That is, at any channel use, only a single user is served.
The symbols of user k, sk, are drawn from a “Gaussian code-
book,” with E[sksH

k ] = INt where INt is the identity matrix
of size Nt, and then multiplied by a precoding matrix WiM

1
,

which is only in uenced by the indices. We refer to the set
of all possible WiM

1
’s as the precoding codebook. In total,

there are KM such precoding matrices. Herein [·]H denotes
complex conjugate and transpose.

The received signal of user k at time instant t, t = 0, 1, . . . ,
can be written as

yk(t) = Hk(t)WiM
1

sJ (iM
1 )(t) + n(t), (1)

where the components of the noise vector n(t) are spatially
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and temporally white complex Gaussian with zero mean and
unit variance. A short-term power constraint is considered:

tr
[
WiM

1
WH

iM
1

]
= trQiM

1
≤ P, ∀iM1 ∈ {1, . . . , K}M , (2)

where tr[·] denotes the trace of a matrix. That is, no temporal
power control is employed.

We assume a memoryless ergodic model, i.e, for each user
k, the corresponding channel Hk(t) changes independently
from one time instant t to another. The channel matrices of
different users are independent, but may follow different dis-
tributions. We are interested in optimizing the sum rate of the
described scheme, with respect to the scheduler, the precod-
ing codebook, and the index mappings:

max
J (iM

1 ),{Ql},{Ik(Hk)}
E log det

(
INr +HJ (iM

1 )QlHH
J (iM

1 )

)
,

(3)

where the expectation is over the randomness of the channels.
We do not impose any explicit constraint on the fairness

of the system. It is however possible to address the fairness
issue indirectly by replacing the sum rate criterion (3) with a
weighted sum rate, which can be handled in a similar proce-
dure to that presented in Sections 3 and 4. In practice, the
weights can be adjusted to meet some fairness requirements.
Such weighting parameters can be considered to be slowly
varying, requiring a much smaller feedback rate compared to
that required to quantize the short-term channel state.

3. JOINT SCHEDULING AND PRECODING
DESIGN: A HIGH-COMPLEXITY APPROACH

We use the generalized Lloyd algorithm [8, 9] to design the
scheduler, precoders and index mappers. More precisely, we
rst approximate the true joint distribution of the channel ma-

trices by a sample (joint) distribution. That is Hk’s are drawn
from a set Hk with nite cardinality |Hk|. Accordingly, the
sum rate criterion in (3) is approximated as

1∏M
k=1 |Hk|

×
∑

H1∈H1

· · ·
∑

HM∈HM

log det
(
INr +HJ (IM

1 )QIM
1

HH
J (IM

1 )

)
.

We then iteratively optimize the index mappings, the sched-
uler, and the precoding codebooks in a two-step procedure,
described as follows. For convenience, de ne the quantiza-
tion region i of user k as

Ri
k

Δ= {Hk : Ik(Hk) = i}.
Step 1: Fix the scheduler J (

iM1
)
, the codebooks QiM

1
,

and all other index mappings Il(Hl), l �= k, nd the optimal
index mapping Ik(Hk) for k = 1, . . . , M .

For clarity we present the solution of the optimization for
k = 1. The index mappings of other users are optimized in a
completely similar manner.

I1(H1) = max
i1∈{1,...,K}

∑
H2∈H2

· · ·
∑

HM∈HM

log det
(
INr +HJ (i1,Il(Hl))Qi1,Il(Hl)H

H
J (i1,Il(Hl))

)

= max
i1

K∑
i2=1

· · ·
K∑

iM=1

∑
H2∈Ri2

2

· · ·
∑

H2∈RiM
M

log det
(
INr +HJ (iM

1 )QiM
1

HH
J (iM

1 )

)
.

Denoting

Ī
(
iM1

) Δ=
1∣∣∣∣RiJ (iM

1 )

J (iM
1 )

∣∣∣∣
×

∑
HJ∈RiJ

J

log det
(
INr +HJ (iM

1 )QiM
1

HH
J (iM

1 )

)
,

we nally obtain

I1(H1) = max
i1∈{1,...,K}

∑
i2

· · ·
∑
iM

(
M∏
l=2

∣∣Ril

l

∣∣) I
(
iM1

)
(4)

where

I
(
iM1

)
=

{
log det

(
INr +H1QiM

1
HH

1

)
if J (

iM1
)
= 1,

Ī
(
iM1

)
otherwise.

Step 2: Fix index mappings (thus all the quantization re-
gions), nd the optimal codebooks {QiM

1
} and the optimal

scheduler J (
iM1

)
.

To that end, for each k ∈ {1, . . . , M}, let

I∗k = max
Q�0

1
|Rik

k |
∑

Hk∈Rik
k

log det
(
INr +HkQHH

k

)

s.t. trQ ≤ P,

which is the maximum expected achievable rate (conditioned
on iM1 ) if user k is scheduled. This optimization problem is
convex and thus its global optimum can be found with stan-
dard methods [10]. Let Q∗

k be the corresponding optimal
transmit covariance matrix. Note that only a single user is
served at a time, hence the optimal scheduler is given by

J (
iM1

)
= arg max

k∈{1,...,M}
I∗k , (5)

and the optimal transmit covariance matrix corresponding to
the tuple iM1 is therefore given by

QiM
1
= Q∗

J (iM
1 )

. (6)
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The proposed iterative procedure guarantees convergence,
but not necessarily to the global optimum due to the non-
convexity of (3). We use a large number of randomly gen-
erated starting points to limit the effects of local convergence.

For implementation, since the values Ī
(
iM1

)
are not de-

pendent on the channel realization, they can be, at least in
principle, computed off-line and stored at the receivers. The
robustness of the described scheme to mismatches in the as-
sumed channel distributions and system con guration remains
to be investigated.

4. JOINT SCHEDULING AND PRECODING
DESIGN: A REDUCED-COMPLEXITY APPROACH

While the performance of the scheme described in Section 3
serves as a benchmark, such a scheme is too computationally
demanding as the codebook size grows exponentially with the
number of users. In this section we present a simpler alterna-
tive. The output of the scheduler and the index of the sched-
uled user are used to choose the precoding matrix. That is,
given k = J (

iM1
)
, user k is selected and the precoding ma-

trix in this case is denoted as Wk
ik

. The codebook size is
KM , i.e., linearly scaled with the number of users. Recall
that there are KM possible tuples iM1 , meaning that some dif-
ferent tuples are mapped to the same precoding matrix. The
design of the proposed scheme is also based on the idea of the
Lloyd algorithm, and is divided into three steps, which are
iterated until (possibly local) convergence.

Step 1: Fix the scheduler, codebooks, and all index map-
pings Il(Hl), l �= k, optimize Ik(Hk). We again only present
the optimization of I1(H1). It can be veri ed that (4) still
holds in this case. A subtle, but extremely important differ-
ence is that user 1 now needs only to compute K terms of the
form log det

(
INr +H1Q1

i1
HH

1

)
, one for each possible value

of i1. In contrast, in Section 3, a user on the average has to

compute KM

M terms of the form log det
(
INr +H1QiM

1
HH

1

)
,

which is not feasible for large numbers of users.

Step 2:Fix Qk
ik

, k = 1, . . . , M and all index mappings,
optimize J (

iM1
)
. We readily have

J (
iM1

)
=arg max

k∈{1,...,M}
1∣∣Rik

k

∣∣ ∑
Hk∈Rik

k

log det
(
INr +HkQk

ik
HH

k

)
.

(7)

Step 3: Fix J (
iM1

)
and all the index mappings, optimize

the codebook {Qk
ik
}. The optimization of Qk

j is somewhat
similar to the one in Section 3, but we have to consider all
regions with ik = j and J (iM1 ) = k jointly. It can be shown
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Approach 1. Codebook size KM

Approach 2. Codebook size KM

Nt = 2, Nr = 2
Feedback resolution K = 2
Number of users M = 1, 2, 4, 8

Fig. 1. Sum rate with different numbers of users M over 2×2
channels.

that

Qk
j =arg max

Q�0,trQ≤P

∑
iM
1 ,J (iM

1 )=k,ik=j⎛
⎝ M∏

l=2,l �=k

∣∣Ril

l

∣∣
⎞
⎠ ∑

Hk∈Rik
k

log det
(
INr +HkQHH

k

)
.

(8)

This is also a convex optimization problem, to which the op-
timal solution can be found ef ciently [10].

The steps described above can be modi ed to obtain an
even simpler scheme, which only uses limited feedback to
schedule a user. In this case, given k = J (

iM1
)
, user k is se-

lected and the precoding matrix is always Wk. The codebook
size is in this case equals to the number of users M .

5. SIMULATION RESULTS

Figure 1 plots the sum rate achieved with the schemes in Sec-
tions 3 and 4 over 2×2 uncorrelated Rayleigh channels where
the components of the channel matrices are i.i.d. complex
Gaussian with zero mean and unit variance. Since the noise
has unit variance, the SNR is de ned as SNR

Δ= P . The feed-
back resolution is xed at K = 2 (1 bit of feedback). The
performance of the high-complexity approach (’Approach 1’)
and that of the reduced-complexity one (’Approach 2’) are in-
distinguishable. This may be attributed to our assumption on
the mutual independence of the users’ channel matrices. If the
users’ channel matrices are correlated, the performance of the
schemes may differ. As can be seen, increasing the number
of users provides a signi cant power gain due to selection di-
versity. For example, at a sum rate of 10 bits per channel use,
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K = 2
K = 4

Nt = 4, Nr = 1
Number of users M = 1, 2, 4

Fig. 2. Sum rates with different numbers of users M and feed-
back resolution K over 4 × 1 channels. The performance of
a single-user scheduled system with perfect CSIT is marked
with ’*.’

a system with 8 users outperforms a point-to-point system by
approximately 3 dB.

Figure 2 illustrates the performance of Approach 2 over
4 × 1 channels with different feedback resolution K. It is
indicated that increasing K may be more ef cient than in-
creasing the number of users in certain cases. A signi cant
portion of the perfect-CSIT gain (and single-user scheduling)
is achieved even with such low-rate feedback schemes.

Figure 3 compares the joint scheduling precoding scheme
(Approach 2) with that of the scheduling-only scheme (’Ap-
proach 3,’ cf. Section 4) over 4× 1 Rayleigh channels. There
is a clear gap in performance between the two schemes, em-
phasizing the sub-optimality of Approach 3. Furthermore,
the difference widens as the feedback resolution K increases
(not plotted herein) since the joint scheme continues to bene-
t from an increasing number of precoding matrices to choose

from. On the other hand, as K increases, the scheduling-only
scheme merely bene ts from a ner user selection.
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