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ABSTRACT
Over the last years, Particle Filters (PF) have attracted consider-
able attention in the eld of nonlinear state estimation due to their
relaxation of the linear and Gaussian restrictions in the state space
model. However, for some applications, PF are not adapted for a
real-time implementation. In this paper we propose a new method,
called Box Particle Filter (BPF), for dynamic nonlinear state esti-
mation, which is based on particle lters and interval frameworks
and which is well adapted for real time applications. Interval frame-
work will allow to explain regions with high likelihood by a small
number of box particles instead of a large number of particles in
the case of PF. Experiments on real data for global localization of
a vehicle show the usefulness and the ef ciency of the proposed
approach.

Keywords: State estimation, Monte Carlo methods, Mobile
robots, Multisensor systems, Interval analysis.

1. INTRODUCTION

Bayesian methods provide an attractive framework for dynamic
state estimation problems [2]. The Bayesian approach consist in
constructing the probability density function (PDF) of the state
vector based on a probabilistic formulation of all available infor-
mation. A particle lter is a sequential Monte Carlo Bayesian es-
timator of the PDF of the state using weighted particles. The ef-
ciency and accuracy of the lter depend mostly on the number
of particles used in the estimation, and on the propagation func-
tion used to re-allocate weights to these particles at each iteration.
If the imprecision, i.e. bias and noise, in the available informa-
tion is high, the number of particles should be very large in order
to obtain good performances. This may induce complexity prob-
lems for a real-time implementation. Several works try to com-
bine approaches in order to overcome these shortcomings (see for
example [5] and references therein). Other works use statistical
approaches to increase the ef ciency of particle lters by adapting
the size of sample sets during the estimation process [3].

If only the maximum error on the available data is known, it
will be judicious to model these errors by their maximum bound
using intervals. Interval methods represent a relatively new re-
search direction in some applications of signal processing. Though,
in the closely related eld of controls there has been much work
that can also be applied to signal processing. In this paper, we pro-
pose an extension of the particle lter algorithm by dealing with
interval data and by using interval analysis and Constraints sat-
isfaction techniques [4]. In usual particle ltering, particles are

punctual states associated with weights depending of the likeli-
hood which is de ned by a statistical model of the observation
error. In the box particle lter (BPF), particles are boxes associ-
ated with weights whose likelihood is de ned by a bounded model
of the observation error. The algorithm of the BPF is presented in
Section 4.

2. BAYESIAN FRAMEWORK AND PARTICLE FILTERS

The state space model can be described as:
�

xk+1 = f(xk, uk, vk)
yk = g(xk, wk)

(1)

where f : R
nx × R

nu × R
nv −→ R

nx is a possibly non-linear
function de ning the state at time k + 1 from the previous state
at time k, the input uk and an independent identically distributed
process noise sequence vk, k ∈ N. We note by nx, nu and nv , re-
spectively, the dimensions of the state, the input and process noise
vectors. The function g : R

nx ×R
nw −→ R

ny is a possibly non-
linear function de ning the relation between the state and the mea-
surement at time k, wk, k ∈ N is an i.i.d measurement noise se-
quence. ny , nw are dimensions of the measurement and measure-
ment noise vectors, respectively. The states and the measurements
up to time k will be represented byXk = {xi, i = 1, · · · , k} and
Yk = {yi, i = 1, · · · , k}, respectively.

From a Bayesian point of view to recursive ltering, given
the measurements Yk, everything worth knowing about the state at
time k is given by the conditional probability density p(Xk|Yk),
which is called the posterior density. The posterior constitutes the
complete solution to the sequential estimation problem. In many
real applications, one has to estimate only the ltering density
p(xk|Yk) which is a marginal of the posterior density function
p(Xk|Yk). The ltering density gives the belief in the state xk

at time k, taking different values, given the measurements Yk =
{yi, i = 1, · · · , k}. Knowing the ltering density p(xk|Yk), one
can easily calculate various estimates of the system’s state like
means, modes, con dence intervals.

Particle lter methods, are the class of simulation lters which
recursively approximate the ltering density p(xk|Yk) by the cloud
of N discrete particles with probability mass, or weight, assigned
to each of them. Hence, a possibly continuous probability den-
sity function is approximated with a discrete one. The sketch of
a particle lter algorithm is as follows. Initially, all particles have
equivalent weight attached to them. To progress to the next time
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instance, two steps are performed in sequence. First, at the predic-
tion step, the state of every particle is updated according to the mo-
tion model. An accurate dynamical model is essential for robust
properties of the algorithm. Next, during the measurement step,
new information that became available about the system is used to
adjust the particle weights. The weight is set to be the likelihood of
each particle state describing the true current state of the system.
This can be computed, via bayesian inference, to be proportional
to the probability of the observed measurements given the parti-
cle state (assuming all object states are equiprobable). The sample
states are then redistributed to obtain uniform weighting for the
next algorithm iteration by resampling them from the computed
posterior probability distribution. At any time, some characteris-
tics (position, speed etc.) can be directly computed, if desired, by
using the particle set and weights as an approximation of the true
probability density function. For more details on the particle lter
algorithm, the reader can refer to [5] and references therein.

3. INTERVAL ANALYSIS BACKGROUND

In this section we brie y present interval analysis and we intro-
duce some useful de nitions very famous in the eld of constraints
propagation techniques (or consistency techniques) [6].

A real interval, denoted [x], is de ned as a closed and con-
nected subset of R, and a box [x] of R

nx as a cartesian product of
nx intervals: [x] = [x1] × [x2] · · · × [xn] = ×nx

i=1[xi]. Usually,
interval analysis is used to model quantities which vary around a
central value within certain bounds. When working with intervals,
one should introduce the inclusion function [f ] of a function f ,
de ned such that the image by [f ] of an interval [x] is an inter-
val [f ]([x]) [6]. This function is calculated such that the interval
enclosing the image set is optimal (the smallest interval englob-
ing the image). One should also extend all elementary arithmetic
operations like +, -, , etc to the bounded error context and extend
usual operations between sets of R

n, e.g., ⊂,⊃,∩, . . ..
Different algorithms, called contractors, exist in order to re-

duce the size of boxes enclosing the solutions. For the fusion
problem considered, we have chosen to use constraints propaga-
tion techniques [6], because of the great redundancy of data and
equations. To de ne theConstraints Satisfaction Problem, we con-
sider a system ofm relations fm linking variables xi of a vector x
of R

nx by a set of equations of the forms: fj(x1, . . . , xnx) = 0,
j = 1 . . . m, which can be written in a compact way as f(x) = 0,
where f is the cartesian product of the fj’s.

De nition 1 (Constraints Satisfaction Problem). A Constraints
Satisfaction Problem H is the problem which gathers a vector of
variables x from an initial domain D and a set of constraints f

linking the variables xi of x.

Note that under the interval framework,D = [x] = ×nx
i=1[xi].

The CSP consists on nding the values of x which satisfy f(x) =
0. The solution set of the CSP will be de ned as S = {x ∈ [x] |
f{x} = 0}. Note that S is not necessary a box. Under the interval
framework, solve the CSP is interpreted as nding the minimal box
[x

′

] ⊂ [x] such that S ⊂ [x
′

].

De nition 2 (Contractor). A contractor is de ned as an operator
used to contract the initial domain of the CSP, and thus to provide
a new box [x

′

] ⊂ [x] such that S ⊂ [x
′

].

There are different kinds of methods to develop contractors.
Each of these methods may be adapted to some speci c CSPs and

not to others. The method used in this paper is the Waltz algo-
rithm [7] which is based on the constraints decomposition on prim-
itive ones and on the use of forward-backward propagation (FBP)
technique [6] for each of primitive constraints. A primitive con-
straint involves only an arithmetic operator or a usual function
(cos, exp, etc.). The principle of theWaltz contractor is to use FBP
for each constraint, without any a priori order, until the contractor
becomes inef cient. The use of this contractor appear to be spe-
cially ef cient when one has a redundancy of data and equations.
In fact, this is the case for the data used in section (5). Note that
Waltz algorithm is independent of the non-linearities and provide
a locally consistent contractors [6]. For more details on interval
analysis, readers are invited to see [6] and references therein.

4. BOX PARTICLE STRATEGY

In this section, we present in details the BPF. The key idea is to use
Interval Analysis, constraint propagation techniques and to model
noises by bounded errors. This is reinforced by two possible un-
derstandings of an interval in one dimension:

1. An interval represents in nity of particles continuously dis-
tributed on the interval.

2. An interval represents a particle imprecisely located in the
interval.

In order to explore the state space, one can split the state space
region under consideration in N boxes {[x(i)]}N

i=1 with empty in-
tersection and associate equivalent weight for each of them. A rst
advantage expected with this initialization using boxes is the possi-
bility to explore the space with a reduced number of box particles.

After the initialization step, the state of every box particle is
updated according to the evolution model thanks to interval analy-
sis tools. Knowing the box particles {[x(i)]}N

i=1 and the input
{[u(k)]} at step k, the boxes at step k + 1 are built using the
following propagation equation: [xi

k+1] = [f ]([xi
k], [uk]), where

[f ] is an inclusion function for f . The interesting propriety one
can notice here is that, in order to propagate the box particles, the
bounded error method is used without introducing noise.

The new measurement should be used in order to adjust the
particle weights and contract the boxes. The innovation for box
particle is a quantity which should indicate the proximity between
the real and the predicted measure boxes. In the bounded error
framework, this quantity can be evaluated as the intersection be-
tween these two boxes. Thus, for all box particles, i = 1 · · ·N ,
we have to predict box measurements using [zi

k+1] = [g]([xi
k+1]),

where [g] is an inclusion function for g. The innovation here con-
sists on the intersection with the box real measure [yk+1]. This
intersection is calculated as [ri

k+1] = [zi
k+1] ∩ [yk+1]. With the

bounded error approach, it’s obvious to conclude that, a box par-
ticle for which the predicted measure box hasn’t an intersection
with the real measure box should be penalized and a box particle
for which the predicted measure is included in the real measure
box should be favorite. This lead us to construct a measure of the
box likelihood as: Ai =

�p

1 Ai(j) where Ai(j) =
|[ri

k+1(j)]|

|[zi
k+1

(j)]|
, p

is the dimension of the measure and |[X]| is the width of [X].
In the particle lter algorithm, each particle is propagated with-

out any information about the variance of it’s position. Note that
the weight of the particle gives us only an information about cer-
tainty when using this particle. In an opposite manner, after been
propagated, the width of each box particle is assumed to take into
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account the imprecision caused by the model errors and inputs im-
precisions. In order to conserve a judicious width of each box, one
should use contraction algorithms which eliminate the non consis-
tent part of the box particle with respect to the box measure [4].
This is in fact similar to the correction step of Kalman ltering
when the variance-covariance matrix is corrected using the mea-
sure [5]. Note that this step, used only for box particles, doesn’t
appear in the particle lter algorithm.

Thus, if the innovation [ri
k+1] is not empty, then we should

contract the box particle [xi
k+1] using the intersection box [ri

k+1]

and Waltz algorithm to obtain a new box particle [xi
k+1]

new. Else,
[xi

k+1]
new = [xi

k+1] and the box particle stays unchanged.
One should update the weights by multiplying the previous

weight by each box likelihood as: ωi
k+1 = (

�p

1 Ai(j))ωi
k =

Aiωi
k

In order to use normalized weights, so that their sum is equal
to one, we should use: ωi

k+1 ←−
ωi

k+1
�

N
j=1 ω

j
k+1

.

The state can be estimated by the center means of the weighted
box particles as: x̂k =

�N

i=1 ωi
kCi

k, where Ci
k is the center of

the box particle i. One can use also a maximum weight estimate,
i.e the state estimate will be the center of the box particle with
the larger weight. A pessimist con dence in the estimation will
be a very well determined area consisting in a box which contain
all the possible weighted boxes. Hence one can assign for this
box the noun of enclosing box. Note that the estimation x̂k is
calculated by usingN vectors Ci

k. Thus, another con dence in the
estimation based on the con dence of each Ci

k can be calculated
with the expression: P̂k =

�N

i=1 ωi
kP i

k, where P i
k is the partial

con dence generated when using each box particle center Ci
k. In

practice, P i
k can be taken as the half width of each box particle.

Thus, P̂k =
�N

i=1 ωi
k
|[xi

k]|

2

After some iterations, only few box particles may be likely
and the rest may have weights close, or even exactly equal to zero.
Thus, one has to sample box particles according to their weights.
Box particles that have high weights are more likely to survive,
whereas those with lower weights are less likely. The resampling
can be ef ciently implemented using a classical algorithm for sam-
pling N ordered independent identically distributed variables [5].
The problem of the resampling is that the resulting samples are de-
pendent since there is a big chance that the samples will be drawn
from a few number of ancestors. In the case of particle lter al-
gorithm, instead of representing the smooth probability density as
they should, particles are clustered into groups. Therefore, some
arti cial noise should be added to the resampled particles in order
to lessen the dependency. This step avoid the particle lter to fall
down. One can use the same strategy for box particles by adding
an arti cial noise to the bounds of the box. Moreover, regarding
the possibilities given by boxes properties, other techniques of re-
sampling can be considered. For example, in order to obtain inde-
pendent and small boxes around regions with high likelihoods, it’s
easily perceived that we can divide each box by the correspondent
number of realization after sampling. Nevertheless, in the bounded
error area, the choice of the number of divisions that one have to do
for each dimension constitutes an open problem under study [1].
After the resampling step, we have to assign the same weight for
all box particles. Note that an estimation of the effective sample
size Neff is given by [5]: Neff = 1�

N
i=1(ωi

k
)2
. The resampling

step can be performed if the effective number of samples is less
than some thresholdNth which is determined experimentally. The

BPF is summarized in Figure 1.

1. Initialization

Set k = 0 and generate N boxes {x(i)(k)}Ni=1 with empty

intersection and with same width and weights equal to 1
N

2. FOR i = 1 · · ·N

3. Propagation or prediction

[xi
k+1] = [f ]([xi

k], [uk]).

4. Measurement update

• Predicted measurement: [zi
k+1] = [g]([xi

k+1]).

• Innovation: [ri
k+1] = [zi

k+1] ∩ [yk+1].

• likelihood: Ai =
�p

1 Ai(j), where Ai(j) =
|[ri

k+1(j)]|

|[zi
k+1

(j)]|
.

• Box particle contraction: IF [ri
k+1] �= ∅, THEN,

contract [xi
k+1] using [ri

k+1] and Waltz algorithm to

obtain [xi
k+1]new, ELSE, [xi

k+1]new = [xi
k+1], ENDIF.

• Weights update: ωi
k+1 = (

�p
1 Ai(j))ωi

k = Aiωi
k

ENDFOR.

5. Weights normalization

FOR i = 1 · · ·N, ωi
k+1 ←−

ωi
k+1

�N
j=1

ω
j
k+1

, ENDFOR

6. State estimation

x̂k =
�N

i=1 ωi
kCi

k. P̂k =
�N

i=1 ωi
k

|[xi
k
]|

2
.

7. Resampling

Neff = 1
�N

i=1
(ωi

k
)2

. IF Neff < Nth, THEN resample to

create N new particle boxes with the same weights.

8. k = k + 1, Goto 2 Until k = kend

Fig. 1. BPF algorithm.

5. APPLICATION TO DYNAMIC LOCALIZATION

We present results of applying the BPF on a real experiments which
consist on a localization problem of a land vehicle, and show that
BPF can be ef ciently implemented with a small number of box
particles. At instant k, we note δS,k and δθ,k the elementary dis-
placement and elementary rotation given by sensors. We make
speci c static tests to determine interval measurements error. The
position and heading angle of the vehicle which is at time k, [Xk] =
[xk]× [yk]× [θk] are calculated in time by using linear and angular
velocities via the following discrete representation:

��
�

xk+1 = xk + δS,k cos(θk +
δθ,k

2
)

yk+1 = yk + δS,k sin(θk +
δθ,k

2
)

θk+1 = θk + δθ,k

(2)

The measurement of the position at time consists here in a Global
Position System (GPS) which is (xGPS , yGPS). The ”longitude,
latitude” estimated point of the GPS is converted in a Cartesian
local frame and the GPS bounded error measurement is obtained
thanks to the GST NMEA sentence [4]. The width of the GPS
measure box can be quanti ed using the standard deviation σGPS

on x and y estimated in real time by the GPS receiver (GST frame),
[xGPS ] = [xGPS−3σGPS , xGPS +3σGPS ], [yGPS ] = [yGPS−
3σGPS , yGPS+3σGPS ]. The GPSmeasurement ([xGPS ], [yGPS ])
is used to initialize the box state position ([x1], [y1]) at instant
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t1. Note that we haven’t a direct measure of the heading an-
gle, so the heading state of the vehicle should be initialized as
[θ1] = [−∞, +∞].

In order to be able to compute estimation errors, we have used
a Thales Navigation GPS receiver used in a Post-Processed Kine-
matic (PPK) mode working with a local base (a Trimble 7400). We
report hereafter the analysis of 4.7 Km path with a mean speed of
50 Km/h using a 3GHz Pentium 4 and a Matlab implementation.
The two lters provide outputs at the frequency of the GPS (5Hz).
More details about the experiments can be found in [4].

The resampling method used for the BPF consists on a sub-
division strategy. The idea consists rst to sample box particles
according to their weights using for example a classical determin-
istic algorithm, and second to divide each resampled box to several
boxes with number equal to the realizations of this box resulting
from the resampling algorithm. This type of resampling will al-
lows us to re ne the solution around regions with high likelihood
and to eliminate boxes with low weights. Nevertheless, one has
to determine the number of divisions to do for each dimension.
For the state considered in the case of the model (2), which is a
three variables state, the box particles will be in R

3. We suggest
to give the preference to bisect boxes heading angle [θ] since we
haven’t a direct measure on this variable, but only an elementary
rotation δθ of the mobile. This division is rstly performed until
the width of the interval on θ of the resampled box is more than a
xed quantity (two degrees for example). For the choice between
the subdivision of intervals on x or intervals on y, we give the
preference to intervals with larger width.

Table 1 shows the mean square error for GPS, PF and BPF. As
a conclusion, the BPF and the PF give equivalent ltering perfor-
mances. Nevertheless, for the BPF running, we use only 10 box
particles comparing with 3000 particles for the PF. Thus, one can
reduce signi catively the particles number by using BPF instead of
PF (for this application, the factor is about 300). Table 1 gives the
mean of the running time of one step for each algorithm. Since the
output frequency of each lter is 5 HZ, the running time for BPF
satisfy real time constraints despite the use of interval arithmetic
programs under Matlab and without code optimization. This is not
the case of the PF. Figure 2 shows the interval error for x and y
estimated for GPS (dashed black), BPF (bold black) and PF (solid
blue). For PF, the interval error is calculated by using 3σ errors
bounds around the point estimate. It can be seen that for this non-
linear problem, the two lters are consistent. Note that the interval
error contain ”0” is equivalent to say that the interval contains the
PPK’s point.

The maximum error on the heading estimation angles provided
by the BPF and the PF are of the same magnitude (Between zero
and two degrees). As shown in Table 1, the mean square errors
for BPF and PF are, respectively, 0.445 and 0.446. One can con-
clude that the BPF is able to reconstruct a non directly measured
variable. Note that the reference heading angle was built manually
from the PPK measurements.

6. CONCLUSION AND FUTUREWORKS

A new fusion strategy that mixes Interval Analysis techniques and
particle lters for data fusion and state estimation purposes was
presented. The method requires a small number of box particles.
This, in fact, answers one of major problems when using particle
lters techniques. A comparison on real data shows that BPF out-
performs the PF solution in term of running time. In our opinion,

GPS PF BPF
mean square error for x(m) 0.134 0.129 0.119
mean square error for y(m) 0.374 0.217 0.242
particle number - 3000 10
one step running time (ms) - 666 149
mean square error for θ(degrees) - 0.446 0.445

Table 1. Comparison of PF and BPF.
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Fig. 2. Interval error for x and y estimated for GPS (dashed black),
BPF (bold black) and PF (solid blue).

the BPF is particularly adapted when using map data with rectan-
gular roads. Indeed, in this case the boxes are adapted to calculate
an intersection with the map. Thus, future works will consist on
applying the BPF algorithm for Map Matching problems.
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