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ABSTRACT

Estimating the P300 subcomponents of Event Related Poten-

tials (ERPs) is very important in the fields of psychiatry and

neurology. The characteristics of these brain signals, such

as latency, location, strength, and variation, can give use-

ful insights of the person’s condition. In particular, the sig-

nals’ characteristics can aid in the diagnosis and monitoring

of some specific psychiatric diseases such as schizophrenia of

various stages, and can be a useful factor for their treatment.

In this paper we employ a new filtering algorithm, incorporat-

ing prior knowledge of the shape of such components. Then

we employ a novel localization algorithm to track the location

of the P300 components trial by trial.

Index Terms— EEG, P300, source tracking, source lo-

calisation, single-trial

1. INTRODUCTION

Event-Related Potentials (ERPs) correspond to the electrical

activity in the brain that occurs in response to a stimulus.

They are measured with electroencephalograms (EEGs) which

offer a fine temporal resolution. This allows an effective study

of their time-course not available with other neuro-imaging

techniques. However, spatial resolution has been limited es-

pecially when the time courses of separate brain sources over-

lap.

The ERP components of particular importance are the P300

subcomponents. The composite P300 wave represents cog-

nitive functions involved in orientation of attention, contex-

tual updating, response modulation and response resolution.

It consists of multiple overlapping components, of which the

two main ones are the P3a and P3b. P3a reflects an auto-

matic orientation of attention to novel or salient stimuli in-

dependent of task relevance. Prefrontal, frontal and anterior

temporal brain regions play a major role in generating P3a

giving it a frontocentral distribution. In contrast, P3b has a

greater centro-parietal distribution due to its reliance on pos-

terior temporal, parietal and posterior cingulate mechanisms.

A number of techniques have been developed for the es-

timation of ERP signals. Blind source separation (BSS) has

been used successfully for EEG separation [1] [2]. BSS ex-

tracts independent sources from the EEG without using any

knowledge about the mixing process and the sources. Like-

wise, it simultaneously estimates the forward matrix. Another

major technique is the so-called dipole method which mod-

els the brain sources as current dipoles [3]. A mathematical

model is created which links the current at the dipole location

to the voltage at the electrodes. Then, a Least Squares (LS)

fit to the data is used to determine their parameters. These

methods perform source localisation as well as source esti-

mation. A drawback of BSS and dipole methods is that the

number of sources needs to be known a priori to achieve good

results. However, the MUSIC method which is based on di-

pole modelling does not need to know the number of sources;

it scans every location in the brain to determine the pres-

ence of a dipole [4]. Another major technique namely the

minimum-norm (MN) methods attempt to estimate the whole

spatial topography of the underlying EEG. In contrast to the

MUSIC based methods, MN methods such as LORETA [5]

attempt to estimate the brain activity at every location simul-

taneously. The problem is traditionally ill-posed and regu-

larisation is needed in the solution. Other techniques such

as wavelets [6][7], Bayesian estimation [8][9] and LS with

generic basis functions have also been used [10][11].

The method proposed in this paper uses an approxima-

tion to the prior information of the shapes of the ERP com-

ponents. As it is widely observed, ERP signals are transient

waves time-locked at approximate latencies after an ERP elic-

iting event. A good approximation for the ERP components is

to model them as Gaussian spikes (with certain latencies and

variances). The spikes then serve as reference signals onto

which the EEG data are projected. Thus, we use the spatio-

temporal information which exist in the data to find the closest

representation of the reference in the data. By estimating all

the existing ERP components in the data the locations of the

sources are computed using a modified LS method.

2. PROPOSED METHOD

We model the EEG signal as an n×T matrix (n is the number

of electrodes and T is the number of time samples):
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X = HS = Σihisi (1)

where H is the n × m forward matrix of the m sources si.

The sources si are considered as the ERP components that

are directly relevant and time-locked to the stimulus. They are

thought to have a transient spiky shape. We need to design m
filters {wi} (note that we do not know the number of sources

beforehand) that satisfy:

si = wT
i X (2)

This can be achieved if each filter {wi} is designed to min-

imise:

wopt = arg min ||si − wT
i X||22 (3)

which, however, requires some prior knowledge about the

shape of the sources si. In this work we model the sources

as:

si = exp(−(t − τi)2/σ2
i ) (4)

where τi is the latency of the ith source and σi its width. The

width is chosen as the average width of the P3a and P3b sub-

components and it does not have to be accurately estimated

since the LS solution (3) will find the closest match.

2.1. Estimating the source signals

To estimate the sources si we create a large number of refer-

ence signals rl = exp(−(t − l)2/σ2) each having a latency

at a different time sample. Hence, we create T of those refer-

ences (Figure 1).

Fig. 1. Gaussian spike used to model the ERP components

Then we compute T (note that T � m) filters such as:

wT
l = arg min ||rl − wT

l X||22, yl = wT
l X (5)

We assume that the signals yl which have a similar latency

to a true source si correspond to that source only. Also, since

the ERP components have distinct latencies we expect the sig-

nals yl to be grouped in m clusters, equivalent to the number

of sources. To cluster the T signals yl we use the following

algorithm:

for i=1 to T

• measure l(i), the latency of yi

• if l(i) − l(i − 1) < β, then yi and yi−1 belong to the

same group, β is a threshold selected empirically

• if l(i) − l(i − 1) > β, then yi belongs to a different

group than yi−1

Then, within each group we average all the signals yi to ob-

tain c signals yc, and it is expected that c = m. Note that

the obtained sources can be the scaled versions of the original

sources si because their scales depend on the amplitude of the

reference signals.

This procedure extracts spike-like waves from the data.

The main advantage is that by sweeping all the data at rela-

tively small intervals, every spike-like wave will be extracted.

This coincides with ERP signals, which are known to have

transient waveforms. Also, this method is robust to differ-

ences in the modelling of the spikes. It extracts the sources

which are most similar to the reference signal.

2.2. Scalp maps

To estimate the scalp maps (the columns of the forward matrix

H) we use the following novel procedure. First we compute

R as the cross-correlation between the data matrix and the

output sources matrix:

R = XYT = HSYT (6)

where Y is a matrix whose rows are the signals yc. The es-

timated sources Y can be written as Y = DS, where D is a

diagonal matrix describing the scaling of each of the sources:

D =

⎛
⎜⎜⎜⎜⎝

d1 0 0 0 0
0 d2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 dc

⎞
⎟⎟⎟⎟⎠

(7)

If we multiply R by the autocorrelation matrix of Y we can

obtain a scaled version of the scalp maps:

RR−1
y = HSYT (YYT )−1

= HD−1YYT (YYT )−1 = HD−1
(8)

The permutation does not have any effect on the solution since

the ordering of the sources is arbitrary. Hence, the ith scaled

scalp map will correspond to the scaled ith source.

2.3. Least-Squares estimation of the position of the source

We now show how to calculate the position of the source us-

ing the modified LS method. The first step is to convert the

elements of the H matrix to estimates of the distances be-

tween the electrodes and the sources. We use an isotropic
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propagation model of the source where it attenuates with the

3rd power of the distance [12]. To convert to distances we

perform the following operation:

rj =
1

h
1/3
j

(9)

where hj is the jth elemement of a specific column of the H
matrix. The point q is the solution to the following Least-

Squares problem:

E(q, M) =
n∑

j=1

[M ||q − aj ||2 − rj ]2 (10)

where we know aj depicts the positions of the electrodes, with

rj as the scaled distances and E(q) is the squared error. The

factor M denotes the scaling that arises from the algorithm as

discussed in the previous section and also from the fact that

our model (10) did not consider the electrical properties of the

head. We desire to minimise the error function and it should

ideally be zero. The derivatives with respect to q and M are:

∇Eq = 2
n∑

j=1

(q − aj)(M2 − M
rj

||q − aj ||2 ) (11)

∇EM = 2
n∑

j=1

M ||q − aj ||22 − ||q − aj ||2rj (12)

We employ an iterative procedure to estimate q:

q = q − k1∇Eq (13)

and

M = M − k2∇EM (14)

where k1 and k2 are the learning rates. The solutions of q and

M are unique with an appropriate number of electrodes. The

proof is omitted due to lack of space.

3. EXPERIMENTAL RESULTS

The EEG data were recorded using a Nihon Kohden model

EEG-F/G amplifier and Neuroscan Acquire 4.0 software. EEG

activity was recorded following the international 10-20 sys-

tem from 15 electrodes. The reference electrodes were linked

to the earlobes. The impedance for all the electrodes was be-

low 5kΩ, sampling frequency Fs=2kHz and the data were

subsequently bandpass filtered (0.1-70Hz).The stimuli pre-

sented were designed to elicit both the P3a and P3b subcom-

ponents.

The steps to reconstruct the sources and compute the lo-

cations are:

1. Choose the width σ, and the number of reference sig-

nals to be created, maximum T

2. Compute the filters wl, each corresponding to a refer-

ence signal

3. Measure the latency of each output signal yl, group

them in c clusters according to the algorithm in the pre-

vious section, and average the signals within each clus-

ter

4. Measure the latency, compute the scalp maps for the

averaged outputs of each cluster

5. Compute the locations of the desired components

3.1. Single-Trial P300 estimation

In this section we estimate the P300 subcomponents (for 40

trials) for a schizophrenic patient and for a control subject

(Figure 2). Then, we compute their average latencies and the

standard deviation of the latencies (Table 1). Lastly we com-

pare their locations (Figures 3 and 4). Table 1 shows that the

latency of the patients P300 is larger than for the control sub-

ject. The P3b’s standard deviation from the mean is bigger

for the patient than for the normal subject. Regarding their

locations, the clusters are more distinct for the schizophrenic

patient’s P3a and P3b than for the normal subject’s.

Fig. 2. The average of the obtained P3a and P3b signals for a

patient, a) and b), and a control subject, c) and d).

Table 1. Mean and standard deviation of the latencies for the

obtained components.

mean P3a mean P3b σP3a σP3b

Patient 297.5 344 12.3 13

Control 303 348 11.2 15.6
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Fig. 3. The locations of the P3a and P3b for a patient are

shown in this figure. The diamonds represent the P3a and the

circles the P3b. The x axis denotes right to left, the y axis the

front to back, z axis is up to down. The distinct clustering is

evident.
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Fig. 4. The locations of the P3a and P3b for a normal subject

are shown in this figure. The diamonds represent the P3a and

the circles the P3b. The close clustering can be seen easily.

4. CONCLUSIONS

A novel filtering and localisation algorithm for the P300 sub-

components from single-trial EEGs has been developed here.

The approach iteratively projects adaptively generated refer-

ence signals onto ERP data. The method was used to com-

pare the characteristics of the P3a and P3b for a control and

a schizophrenic patient. It was found that firstly, the average

latency for the schizophrenic patient was less than the normal

subject’s. Secondly, the spread of P3b was more for the pa-

tient. Finally, it was found that the locations of the P3a and

P3b were more distinct from trial to trial for the schizophrenic

patient.
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