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ABSTRACT

Adaptive interference canceling beamformers are known to
suffer from beampattern distortion, particularly when inter-
ferers approach the nominal mainlobe. In some applications
such as radio astronomy, even small pattern variations can
be problematic. We address the issue of computing power
spectral density (PSD) estimates at the output of a beamform-
ing array in the presence of strong moving interference. A
bias corrected PSD estimation algorithm is introduced which
uses subspace projection methods to cancel interference at
the beamformer. A correction step eliminates both pattern-
distortion-induced PSD bias and spatial response errors over
the long-term PSD averaging window.

Index Terms— Adaptive arrays, Interference suppres-
sion, Radio Astronomy, Spectral analysis

1. INTRODUCTION

This paper considers the problem of computing power spec-
tral density (PSD) estimates from the output of a beamform-
ing array steered toward some signal of interest in the pres-
ence of strong moving interference. Conventional wisdom
suggests using one of many candidate adaptive array process-
ing algorithms to null out the interferer, followed by a sepa-
rate PSD estimator which operates on the beamformer time
series output. However, all known interference cancellation
array processing algorithms introduce distortion in the effec-
tive beamforming spatial pattern, particularly as interference
encroaches on the beam mainlobe. This biases the PSD esti-
mate due to time varying changes in the beampattern.

In some applications, including radio astronomical (RA)
observation, even modest beamshape distortions can be unac-
ceptable. For example, in RA where signals of interest have
power levels 30 dB or more below the noise oor, a small
mainlobe distortion can corrupt sensitive calibrated measure-
ments. Also, pattern variations in a radiometer system trans-
late directly to an increase in the minimum detectable signal
level since observing weak signals is only possible with long
time integration and by subtracting a stable low variance esti-
mate of the noise spectrum. Even variations in sidelobe pat-
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terns can make detection impossible due to induced variations
in the observed noise levels. This is true even when beam
response is held accurately to calibrated levels at the beam
mainlobe center point. Thus for practical RA, beamshapes
must be known precisely and must be be stable over time.
This fact has hindered adoption of adaptive array interference
cancellation techniques in RA even though man-made radio
sources pose critical signal pollution problems. Typical RA
interference comes from satellites or xed ground transmit-
ters, but due to Earth rotation and long integration times all
appear to be moving relative to a deep space object of interest
so that our assumption of moving interference is satis ed.

We introduce a new estimation algorithm which combines
adaptive interference canceling with temporal PSD estimation
and bias correction to remove the effect of beam distortions.
This is possible if the signal of interest is stationary but inter-
ferers move during the PSD integration time window (which
we will call the long term integration period, or LTI) . Though
the LTI PSD estimate can be corrected for beam distortion
bias, the method does not produce an unbiased beamformer
time series output. The bias correction is based on the method
of Leshem and van der Veen for array covariance estimation
in a radio astronomical synthesis imaging [1]. We show how
their technique can be adapted to PSD estimation.

2. SIGNAL MODEL

Consider a P element sensor array which at time sample n
produces a length P × 1 data vector

x[n] = ass[n] + Ad[n]D[n] + η[n]

D[n] = diag{[d1[n], · · · , dQ[n]]}

where s[n] is the signal of interest with corresponding array
spatial response vector as, η[n] is noise and dq[n] is one of Q
“detrimental” interfering sources whose corresponding array
response vector forms the q-th column of Ad[n]. Assume that
s[n] and η[n] are wide sense stationary random processes and
s[n] is spatially xed relative to the array so that as is con-
stant. On the other hand, both Ad[n] and D[n] are nonsta-
tionary over the long term due to interferer motion. However,
since interference motion is relatively slow compared to the
sample rate, over L time samples called the “short term inte-
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gration (STI)” window length, Ad[n] is approximately con-
stant and D[n] is approximately wide sense stationary.

It is desired to estimate the temporal PSD of s[n],
Ss(ω) = F(E{s[n + m]s∗[n]}), without the corrupting ef-
fect of interferers dq[n] (here F is the Fourier transform with
respect to m, E{·} is expectation, and ∗ indicates complex
conjugate). An obvious approach is to compute a beamformer
steered to s[n] followed by a sample PSD estimator. Let the
beamformer output be y[n] = wH

j x[n] where wj is a weight
vector computed for the j-th STI to steer the beam’s main-
lobe maximum response toward s[n] and to reduce sidelobe
response in interferer directions. A simple spectral estimate
is formed by applying the well known Welch’s method [2] to
y[n], which can be expressed in the matrix-vector form

Ŝy =
α

M

M−1∑
m=0

|FGym|
�2

, G = diag{γ} (1)

ym =
[
y[m(N −O), · · · , y[m(N −O) + N − 1]

]T

where N is the length of data window used in computing
the discrete Fourier transform (DFT), O is the number of
overlapping samples in successive windows, γ is the spec-
tral shaping real time window (e.g. Hamming), F is the uni-
tary DFT matrix, and | · |�2 denotes element-wise magni-
tude squared. Averaging is computed over M data windows,
gross amplitude bias due to γ is corrected by α = 1/(γT

γ),
elements of vector Sy correspond to frequency bins, and
‘ ·̂ ’ indicates an estimated quantity. To the extent that wj

suppresses interferers in y[n], Ŝy is a viable estimator for
Ss =

{
Ss(ω)|ω=(2π[0,1,··· ,N−1])/N

}
.

For RA applications, noise power, even after beamform-
ing, exceeds the desired signal. Thus Sy,η � Sy,s element
wise, where subscripts η and s denote noise and signal con-
tributions to Sy respectively. In order to estimate Ss, as-
tronomers subtract a baseline noise reference estimate com-
puted from a separate data set with matching statistics except
for the absence of signal. For example, Ŝs = Ŝy−Ŝy,η where
Ŝy,η is obtained by temporarily steering the beam away from
the source and integrating over a very long LTI widow (10 s
to 10 min.) to reduce estimation error variance. The signal
spectrum can only be observed when sample error standard
deviation in both Ŝy,η and Ŝy is below Ss in all frequency
bins of interest, and noise statistics have not changed during
either of the LTIs used to compute them. This requires excep-
tional beamformer stability such that variations in wj over all
j in the LTI do not affect the noise spectral shape. Interferers
must also be nulled in each STI to attenuate them well below
the noise oor or they will dominate Ŝs.

We de ne the time dependent array autocorrelation matrix

Rx[n] = E{x[n]xH [n]} (2)
= σ2

sasa
H
s + Ad[n]Σd[n]AH

d [n] + Rη

Σd[n] = diag
{[

σ2
d1

[n], · · · , σ2
dQ

[n]
]}

where ‘H ’ is matrix complex conjugate and the σ2 values rep-
resent the corresponding signal and interference variances.
Note that only the interference terms in Rx[n] are time de-
pendent, but due to approximate stationarity over an STI we
may write

Rx[n] ≈ Rx,j, ∀ jL ≤ n < (j + 1)L (3)
Rx,j = σ2

sasa
H
s + Ad,jΣd,jA

H
d,j + Rη

Ad,j = Ad[jL], σ2
dq,j = σ2

d1
[jL] (4)

The STI sample estimator of Rx,j is computed as

R̂x,j =
1

L

(j+1)L−1∑
n=jL

x[n]xH [n] =
1

L
XjX

H
j (5)

Xj =
[
x[jL],x[jL + 1], · · · ,x[(j + 1)L− 1]

]
. (6)

3. BIAS CORRECTED ARRAY PSD ESTIMATION

The rst order of business is to calculate beamformer weights,
wj , using R̂x,j such that interferers will be cancelled while
steering a high gain mainlobe toward s[n]. The beamformer
must be updated each STI in order to track interferer motion
and must satisfy

wH
j Ad,j = 0, i.e. wj ∈ N{Ad,j}

at least approximately, where N{·} indicates nullspace. Any
number of algorithms can be considered, including linearly
constraint minimum variance (LCMV), maximum SNR, and
subspace projection spatial ltering [1,3,4], but as mentioned,
all will distort the quiescent (interference free) beampattern
to some degree. A variety of methods have been proposed
to control beam shape, including several mainlobe constraint
schemes for LCMV and “diagonal loading” of R̂x,j to re-
duce sidelobe distortions in any of the algorithms [3]. None
of these approaches can simultaneously achieve deep inter-
ference nulling and beamshape control in both mainlobe and
sidelobes. The proposed method removes these bias effects in
the PSD estimate to produce a distortionless effective beam-
pattern over the LTI window.

We will use the subspace projection approach to form

wj = Pjw (7)

were w is a deterministic xed beamforming weight vector
with the desired quiescent beam response and Pj is an esti-
mate of P⊥

Ad,j
, the perpendicular subspace projection matrix

for Ad,j . Assuming interference dominates other signals and
noise (the typical case in radio astronomy applications), one
can use the partitioned SVD approach and let

Pj = I−UdU
H
d

where Ud contains the rst Q ordered left singular vectors
corresponding to the largest singular values in the decompo-
sition R̂x,j = UΣ

1

2 VH , U = [Ud |Us+η]. The number of

II  1146



independent interfering sources, Q, is either assumed known
or is estimated using a method such as MDL [5].

When O = 0 and N = L so the FFT windows are non-
overlapping and match the STI length1, then exploiting sym-
metry of G and F and using (6) and (7) in (1) yields

ŜT
y =

α

M

M−1∑
j=0

∣∣wHPjXjGF
∣∣�2

. (8)

Using properties presented in the Appendix for the matrix
Kronecker product,⊗, and column-wise Kronecker or Khatri-
Rao product, ◦, (8) can be expressed as

ŜT
y = (9)

α

M
(wH ⊗wT )

M−1∑
j=0

(Pj ⊗P∗j )
(
(XjGF) ◦ (XjGF)∗

)
.

As in [1] de ne

C =
1

M

M−1∑
j=0

(Pj ⊗P∗j ). (10)

The nal bias corrected array PSD estimator is then given by

ŜT
y,c =

α

M
(wH ⊗wT )C−1 (11)

×
M−1∑
j=0

(Pj ⊗P∗j )
(
(XjGF) ◦ (XjGF)∗

)
.

Computational and memory savings are possible for a practi-
cal implementation of (11) by using FFTs and de ating some
of the Kronecker products.

Estimation bias is assessed by computing the expected
value, where for simplicity we assume interferer motion is
deterministic and Pj = P⊥

Ad,j
exactly. This implies Pj is not

random, and insures the interference component in Xj is re-
moved. Thus Xj may be replaced by Xs+η,j formed as in (6)
but using only (ass[n] + η[n]). For the proposed estimator

E{ŜT
y,c} =

α

M
(wH ⊗wT )C−1

⎛
⎝

M−1∑
j=0

(Pj ⊗P∗j )

⎞
⎠

×E
{
(Xs+η,1GF) ◦ (Xs+η,sGF)∗

}

= α(wH ⊗wT )E
{
(Xs+η,1GF) ◦ (Xs+η,1GF)∗

}

where we have substituted (10) for C and exploited the wide
sense stationarity of s[n] and η[n] so dependence of Xs+η,j

on j is removed under the expectation. This enabled factor-
ing the expectation term out of the summation. The important
points are that all spatial bias introduced by the time vary-
ing projection matrices Pj has been removed and that the
bias corrected E{ŜT

y,c} has the same value as that of E{ŜT
y }

obtained from a beamforming Welch’s PSD estimator under
conditions of no interference and xed beamforming weights.

1We have developed a different formulation for overlapped arbitrary
length windows, i.e. when O �= 0 and N �= L. This will be presented
in a forthcoming paper.

Fig. 1. Beampattern variation over time for each wj in the
LTI using subspace projection beamforming.

4. SIMULATION RESULTS

This section presents an experiment with a seven element half
wavelength spaced uniform line array. The source of interest
was at a bearing of 5◦ with SNR of -30 dB. Two moving in-
terferers were observed with initial bearings of 33◦ and −35◦

and both moving at 5 × 10−4 degrees per sample. The in-
terference to noise ratio was 0 dB for each. The full LTI
window includes 105 samples, and N = L = 512 samples
with O = 0. Noise was i.i.d. both spatially and temporally.
The source and interferers were all narrowband at distinct fre-
quencies so that their contributions to the PSD estimate could
be readily identi ed.

Figure 1 presents the beamformer directional response
pattern produced by wj = Pjw for each STI, j. Note that
two beamforming nulls track interferer motion. For the early
STIs both interferers are in the sidelobes so the mainlobe
steered to 5◦ appears undistorted. However, in the later STIs
the left-hand interferer encroaches on the mainlobe producing
signi cant distortion and raising the sidelobe levels.

Figure 2 shows PSD estimates obtained using “conven-
tional” xed weights, w, and subspace projection weights,
wj , with and without bias correction. The conventional
beamformer was completely ineffective in suppressing inter-
ference. The curve for subspace projection without bias cor-
rection shows that interference was effectively excised, but
due to beamshape distortions the noise oor is seen to rise.
This would mask weak signals of interest and introduce in-
stability in the noise baseline estimate. The bias corrected
subspace projection PSD was computed using (11). The cor-
responding curve in Figure 2 shows the methods maintains
the low noise oor of the xed beamformer while effectively
canceling interferers.

Figure 3 plots the “effective” beampattern of the three
methods as seen through a PSD estimate over the full LTI
window. Though for the subspace projection methods the
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Fig. 2. PSD estimates over full LTI. (a) Signal of interest is at
0.62 rad and interferers are at 0.3 and 0.9 rad. (b) Expanded
view shows bias corrected PSD eliminates interference, accu-
rately estimates signal level, and keeps noise oor low.

STI beampattern is changing over time, these curves repre-
sent the net effect as seen in the nal PSD which used all
time samples. Each point in the curves is obtained by placing
a single source in the far eld (with no noise or other sig-
nal). This probe signal is then processed for each STI using
the corresponding wj taken from the signal plus interference
plus noise scenario. The probe signal level seen in the LTI
PSD is interpreted as the effective beam response in the probe
direction. The bias corrected subspace projection PSD has
an effective beampattern indistinguishable from the quiescent
pattern produced by w alone.

5. CONCLUSIONS

It has been shown that in the context of PSD estimation it is
possible to use array processing techniques to cancel interfer-
ence while maintaining a desired “effective” beampattern spa-
tial response over the estimation time window. For very sen-
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Fig. 3. Effective beam response patterns through the full
LTI PSD estimates. Note the bias corrected subspace beam-
former PSD has a completely undistorted effective beampat-
tern matching the conventional quiescent response.

sitive calibrated detection and scienti c measurement obser-
vations such as radio astronomy it is anticipated this method
will help overcome the inertia which impedes adoption of crit-
ically needed interference canceling methods.

6. APPENDIX

The following matrix product properties were used in (9). For
column vector z and arbitrary matrices A, B, C and D:

1.
∣∣zT

∣∣�2
= zT ◦ zH .

2. (AB) ◦ (CD) = (A⊗C)(B ◦D).

3. (AB)⊗ (CD) = (A⊗C)(B⊗D).
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