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Abstract—We develop generalized method of moments esti-
mators to estimate the parameters of a two-dimensional Boolean
random eld from measurements made on the coverage process
induced on a straight line in the eld. This is distinct from earlier
studies e.g. [1], [2], where the parameters of a two-dimensional
Boolean eld are obtained from the coverage properties of a two-
dimensional set. This problem has applications in radio-active
eld monitoring.

Index Terms—Radioactive Field Estimation, Boolean Field,
Parameter Estimation, Health of a Wireless Sensor Network

I. INTRODUCTION AND PRELIMINARIES
A two-dimensional Boolean random eld is a collection of

random sets {Xi + Ci}, where Xi ∈ �
2 are the points of

a Poisson process, Ci are i.i.d. random subsets in �2 and
Xi + Ci =: {Xi + x : x ∈ Ci} [1]. In this paper, our
interest is in estimating the parameters of a two-dimensional
Boolean random eld from measurements made on the cover-
age process induced on a straight line (one dimensional set)
in the eld. This is distinct from earlier studies e.g., [1], [2],
where the parameters of a two-dimensional (n-dimensional)
Boolean eld are obtained from the coverage properties of a
two-dimensional (respectively, n-dimensional) set. This is also
distinct from the non-parametric eld estimation and detection
problems studied in the context of sensor networks, e.g., [3],
[4].
The motivations for the results obtained in this paper are

many but we focus on two problems. The rst problem is
that of sensing radioactive deposits in a eld [5]. Consider
a sensor traveling along a straight line path in the eld,
where it is activated by the radioactive deposits. The pattern
of activation of the sensors is to be used to estimate the
spatial density and the strength of the deposits. By suitably
modeling the radioactive eld, the problem can be reduced to
the Boolean parameter estimation problem. Let the radioactive
deposits be distributed according to a spatial Poisson process
{Xi} where the i is just any systematic indexing of the
particles. The radiation-exposure region, the region within
which a sensor can be activated, of the ith deposit can be
modeled as a random set Ci. The mapping to the Boolean
eld parameter estimation problem is obvious with the Poisson
density of {Xi} measuring the quantity of the deposit and the
size of {Ci} measuring the strength of the deposit. Another
motivation is in monitoring the health of a randomly deployed
sensor network by estimating the density of the active sensors
and their effective range. We discuss this monitoring problem
in more detail in Section III.
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Fig. 1. L is the line-segment AK . Segments AC, BD, EG, FH and IJ
are the covered components and the dashed segments AD, EH and IJ are
the clumps. The region between the clumps, i.e., DE and HI, are the holes.
The induced coverage of L is the union of the clumps i.e., AD ∪EH ∪ IJ .
The clump AD extends beyond L. Only points in PQRSTV may affect the
coverage of L.

A. Preliminaries
Consider a Boolean eld in �2. A point x in the two-

dimensional eld is said to be covered by the Boolean random
eld if x ∈ ∪i(Xi + Ci). For a set A ⊂ �2, we will refer to⋃
i A∩(Xi+Ci) as the coverage of A and each A∩(Xi+Ci)

as the covered component i (see Fig. 1). Our interest is in
the case when A is a straight line-segment. In this case,⋃

i A∩(Xi+Ci), will be a union of disjoint line segments. We
call each of these disjoint line-segments as clumps in A and
the total length of

⋃
i A ∩ (Xi + Ci) as the covered length of

A (see Figure 1). Thus the clumps are unions of overlapping
covered components. The segments between the clumps are
called holes.
We consider a speci c case of the above problem. Let

B denote a two-dimensional Boolean eld, where {Xi} has
density λ and the sets Ci are circles with random radii δRi.
Here δ, 0 ≤ δ ≤ 1, is a scaling constant and Ri are
i.i.d random variables distributed as R with density function
fR(r). We assume that the sensing radius has a nite support.
Equivalently, we take the support of R, to be in [0, 1]. For
the radiation deposit example, δ can be viewed as a measure
of the deposit strength and R as a reference condition, e.g.,
initial strength. It is reasonable to assume that the statistics of
R are known.
Our primary interest is to estimate λ and δ from the number

of clumps and the clump lengths on a straight line segment
L of length l0. Note that this is equivalent to estimating the
Boolean parameters from the hole lengths and the no. of
holes. In the radioactive deposit measurement example, this
corresponds to the case when the monitoring sensor travels
along L and at any location it cannot distinguish the number
deposits that are activating it. The observation by the sensors
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here is similar to a paralyzable (or Type II) counter [6]. Other
sensor activation models are discussed in Section III.
Let L be a straight line path of length l0. Let L be

the extension of L to in nity on both sides. To obtain the
estimators we rst need to understand the coverage process
on L. The clumps on L correspond to the coverage of L
induced by the two-dimensional Boolean process B described
earlier. It was proved in [7] that the random process on L is
an M/G/∞ queue (equivalently an one-dimensional Boolean
process). Speci cally,
1) The coverage process induced on L has the same statis-
tics as the one-dimensional Boolean process, {X̄i + C̄i}
where X̄i and C̄i are as follows. {X̄i} is a Poisson
arrival process on L of density λ̄ = 2λβδ, C̄i’s are
the random i.i.d intervals (0, 2δR̄i] and the R̄i’s are i.i.d
random variables distributed as R̄ with density

fR̄(r̄) =

{
r̄
β

∫ 1

r̄

fR(r)√
r2−r̄2

dr for 0 ≤ r̄ ≤ 1

0 otherwise
.

Observe that the C̄is are essentially the covered compo-
nents and E

(
R̄
)

=
πE(R2)
4E(R) .

2) The clump lengths, Zi, are i.i.d. random variables dis-
tributed as Z , with mean

E(Z) =
eπE(R2)δ2λ − 1

2λE(R) δ
. (1)

3) The total covered length, CL, has mean

E(CL) = l0

(
1− e−πδ2λE(R2)

)
. (2)

II. A GENERALIZED METHOD OF MOMENTS ESTIMATOR
A closed form expression for the distribution and the vari-

ance of the clump length is not available. Hence, developing
a maximum likelihood estimator or a method of moments
estimator seems impractical. We instead devise a generalized
method of moments (GMM) estimator. GMM estimators have
many desirable properties including consistency, asymptotic
unbiasedness and asymptotic normality [8].
The generalized moments that we use are the expected total

covered length (stated in Eqn. 2) and the expected clump
length (stated in Eqn. 1). If cL and z̄ are the sample values of
the covered length and the sample mean clump length, then the
GMM estimators, δ̂1 and λ̂1, are obtained as the minimizers
of ε1 =

„
z̄ − e

πE(R
2)δ

2
λ
−1

2λβδ

«2

+
“
cL − l0

“
1− e−πδ2λE(R2)

””2

.

We get,

δ̂1 =
2E(R) (l0 − cL) z̄

πE(R2) cL

ln

(
l0

l0 − cL

)
(3)

λ̂1 =
ln

(
l0

l0−cL

)
πE(R2) δ2

1

=
cL

2E(R) (l0 − cL) z̄ δ̂1

. (4)

Let nz be the number of clumps with the sample clump lengths
being z1, z2, · · · , znz

. The sample of the covered length, cL,
is cL =

∑nz

i=1 zi. z̄, is obtained as the sample mean of
only clumps that are completely within L. Thus we will not
include clumps that include the beginning and end of path
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Fig. 2. The bias and mean square error in δ̂1 and λ̂1 as a function of l0.

L in obtaining z̄. For example, in Fig. 1 the clumps that
are observed are AD, EH and IJ . However the clump AD
extends beyond L and is a part of the clump MD. Therefore,
we ignore the length of AD in calculating the sample mean.
We now study the estimator in Eqns. 3 and 4 through

the following simulation model. Sensor nodes are deployed
according to a Poisson process in the rectangle with diagonals
at (−1,−1) and (l0 + 1, 1). fR(r) is uniform in [0, 1], δ = 1
and λ = 1. z̄ and cL are obtained from the coverage of (0, l0)
of the x-axis. Fig. 2 plots the bias and the mean square error
in the estimators as a function of l0. These are averaged over
10, 000 samples. Note that bias in estimating a parameter θ

using an estimator θ̂ is E

(
θ̂
)
− θ. We observe that the bias

in δ̂1 and λ̂1 when l0 = 50 is approximately 2% and 10%
respectively. As expected, the estimator bias and mean square
error approach 0 with increasing l0. Also observe that the bias
in δ̂1 is negative while λ̂1 has a positive bias. In the following
we prove that this is indeed true. Solving for δ from Eqns. 1, 2
we get,

δ =
2E(R) (l0 − E(CL)) E(Z)

πE(R2)E(CL)
ln

(
l0

l0 − E(Cl)

)

Since the Zis are i.i.d. random variables, E(Z) = E(z̄). Also,
E(CL) = E(cL). Therefore,

E

(
δ̂1

)
− δ =

2E(R)

πE(R2)

(
E

(
(l0 − cL)z̄

cL

ln

(
l0

l0 − cL

))

−
(l0 − E(cL))E(z̄)

E(cL)
ln

(
l0

l0 − E(cL)

))

Observe that the above expression is of the form E(f(cL)z̄)−
f(E(cL))E(z̄). z̄ and cL are positively correlated random
variable. Also f(cL) is an decreasing function of cL and hence
f(cL) and z̄ are negatively correlated. Therefore E(f(cL)z̄) ≤
E(f(cL)) E(z̄). Hence

E

(
δ̂1

)
− δ ≤

2E(R)E(z̄)

πE(R2)
(E(f(cL))− f(E(cL))) .

It can be proved that f(·) is a concave function. From Jensen’s
inequality it follows that E(f(cL)) − f(E(cL)) ≤ 0 and hence
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Fig. 3. The bias and mean square error in δ̂2 and λ̂2 as a function of l0.

E

“
δ̂1

”
− δ ≤ 0. Similarly, we can show λ̂1 overestimates.

III. OTHER MEASUREMENT MODELS
The next measurement model we consider has an appli-

cation in network monitoring. Typically, sensors are driven
by a xed battery supply of nite energy that cannot be
replaced. In any sensor network, with time and use there
is a gradual decrease in the available energy and when it
reduces below a threshold, the sensor becomes non-functional.
There are also unpredictable sensor losses due to sensor faults
and enemy action. Sensor network monitoring will involve
identifying such sensor losses and monitoring other critical
network properties.
We consider a system where external mobile agents, called

scanners, travel into the network and make local observations
about the communication capabilities of the sensor nodes
in the network. The scanner communicates with a sensor
when it is in the communication region of that sensor. The
scanner travels along L and measures the number of sensors
it communicates with, Ns, and the distances on L for which it
could communicate with the sensors, T1, · · · , TNs

. These are
then used to obtain the sensor density and the parameters of the
communication region. Such holistic approaches to network
monitoring, as against node level fault detection, were rst
discussed in [9], where periodic updates of the aggregated
‘health’ of the network were obtained. Also, the idea of using
external mobile agents to perform critical network activities is
not new and has been discussed before as mobile agent based
distributed sensor network (MADSN), e.g., in [10].
We assume that the sensor nodes are distributed according to

a spatial Poisson process of density λ and the communication
range of sensor node i is a circle of random radius δRi

with the Ris being i.i.d. We can then model the network
communication map of the sensor network as a Boolean
eld similar to B. Observe that T1, · · · , TNs

will be the
lengths of the covered components. Recall that the covered
component i is the length of the coverage of sensor i. From
Section II we have E(Ns) = 2λδE(R) and the Ti’s are i.i.d.
random variables distributed as T with mean E(T ) =

δπE(R2)
2E(R) .

Therefore if ns is the sample of Ns and t̄ the sample mean
covered components lengths, the GMM estimators, δ̂2 and λ̂2,

are the minimizers of ε2 = (ns − 2λδE(R))2 +

„
t̄−

δπE(R2)
2E(R)

«2

.

As in the previous case, we use the lengths of only those
covered components that are completely within L to obtain t̄.
We get

δ̂2 =
2E(R) t̄

πE(R2)

λ̂2 =
ns

2E(R) δ̂2

.

Fig. 3 plots the bias and mean square error in the estimator
as a function of l0, averaged over 10000 iterations. fR is
uniform in [0, 1], δ = 1 and λ = 1. From Figs. 2 and 3
we observe that the errors in δ2 and λ2 are almost an order
smaller than the errors in δ1 and λ1. We present an intuitive
argument for the same. In obtaining the GMM estimator we
are approximating the expected value of the observations by
their sample values. Since a clump is the union of covered
components, VAR(nz) ≥ VAR(ns) and VAR(Z) ≥ VAR(T ).
Therefore T̄ and ns will be closer to their expected values
than will Z̄ and nz . This explains the smaller errors in δ2 and
λ2.
For the sake of completeness, we consider another obser-

vation model that may be only of theoretical interest and is
motivated by the type-I or non-paralyzable counter [6]. In this
model, if the starting points of the covered components are
considered as arrival times and the end points as departure
times, the random process ‘seen’ by the mobile agent is
an M/G/1/1 queue, i.e., there is only one server and any
new arrival is dropped if the server is busy. We estimate the
Boolean eld parameters from the total number, Nb, and the
length, B1, · · · , BNb

, of these busy periods in L. Unlike in the
rst observation model where the random process seen by the
mobile agent is anM/G/∞ queue and the busy period lengths
are statistically equivalent to the clump lengths, in this model
the busy lengths are equivalent to the covered component
lengths. Since the arrival process is a Poisson point process,
the time from the instant an arrival was completely serviced
to the next arrival is exponentially distributed with arrival rate
λ̄. Therefore, the idle periods will be exponentially distributed
with parameter λ̄. By considering a busy period followed by
an idle period as a renewal period, a strong law result can be
obtained for the number of busy periods Nb in a time interval
of duration l0. From Theorem 3.5 of [6], with probability 1

lim
l0→∞

Nb

l0
=

1

1/λ̄ + E
(
B̄
) =

2λδE(R)2

E(R) + πλδ2E(R)E(R2)
(5)

Let nb and bi be the samples of Nb and Bi respectively.
Let b̄ be the sample mean of the busy periods obtained by
averaging the lengths of only those busy periods that are
completely within L. Then, from Eqn. 5 and the fact that the
busy periods (covered components) have mean δπE(R2)

2E(R2) , the
following GMM estimator can be obtained.

δ̂3 =
2E(R) b̄

πE(R2)

λ̂3 =
nb

2E(R) l0δ̂3 − πnbE(R2) δ̂2
3
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Fig. 4. The bias and mean square error in δ̂3 and λ̂3 as a function of l0.

Fig. 4 plots the bias and mean square error in the estimator as
a function of l0, averaged over 10000 iterations. fR is uniform
in [0, 1], δ = 1 and λ = 1. As expected the bias and the mean
square decrease to 0 as l0 increases. Further, from Figs. 3 and 4
we observe that the errors are greater for δ3 and λ3. This is
because the number of complete covered components observed
in this model will be smaller as we drop arrivals when the
server is busy.

IV. DISCUSSIONS
In this paper we have developed simple estimators to

estimate the parameters of a Boolean eld from its one-
dimensional coverage properties. A comparison of the estima-
tors developed in this paper with other estimation procedures,
discussed in literature, is not instructive as these procedures
use different measurements to estimate the parameters. The
analyses of homogeneous Boolean elds that we have pre-
sented can also be extended to non homogeneous Boolean
elds. Since δ ≤ 1 and the support of R is in [0, 1], only
Poisson points within a distance of 1 affect the coverage
properties of a line segment. For example, in Fig. 1 only
points in PQRSTV may affect the coverage of the L. Thus,
if the density of the non-homogeneous eld changes slowly
we can make the assumption that the density is uniform over
the area that can potentially cover L. Such estimates from
sensors monitoring different parts of the eld can then be
stitched together to estimate the complete non-homogeneous
eld. Also, along similiar lines it is possible to estimate
the parameters of a k−dimensional Boolean eld from the
coverage properties of a l−dimensional set in the eld.
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