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ABSTRACT

The optimal (adaptive) linear combiner (beamformer) weights
for a sensor array are expressed in terms of the inverse of the
multi-channel (MC) covariance matrix. Rather than form an
estimate of the covariance matrix directly from the available
data and inverting it, an alternative direct estimate of the in-
verse may be obtained by forming parametric MC linear pre-
diction estimates and then expressing the inverse in terms of
these parametric MC estimates. The resulting parametric es-
timate of the inverse is typically more accurate than inverting
the estimate of the covariance matrix. This paper reveals, for
the rst time, the structure of the the inverse of the covariance
matrix for the MC version of the covariance least squares lin-
ear prediction algorithm. The inverse structure involves prod-
ucts of triangular block MC Toeplitz matrices, which leads to
fast computational solutions for the optimal weights.

Index Terms— Adaptive Arrays, Matrix Decomposition,
Matrix Inversion, Radar Signal Processing, Multichannel

1. INTRODUCTION

The output y = wTx of a linear combiner (space-time lter)
operating on an arbitrary geometry sensor array is expressed
in terms of an inner product of a multi-channel (MC) weight
vector w of dimension M × 1 and a comparable dimension
MC data vector from the array. For a stationary array (posi-
tion does not change with time), the MC data vector is a func-
tion of just spatial dimension M . For a non-stationary array
(position changes with time), the MC data vector is a func-
tion of both spatial dimension M and temporal dimension N .
An example that motivates this paper is the radar space-time
adaptive processing (STAP) problem, as summarized in [1].
It is well known that the optimal (adaptive) weights that min-
imize the variance of the output y while passing a signal from
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a preferred steering vector direction represented by the vector
e is

w = R−1e (1)

for which the MC covariance matrixR is typically estimated
as

R̂ =
1
R

R∑
r=1

x[r]xH [r] (2)

over R measured realizations of the MC data vector x. How-
ever, we have found that improved estimates of the inverse
MC covariance matrix may be obtained using MC parametric
estimation algorithms because the inverse covariance matrix
can be expressed directly in terms of the estimated MC para-
meters. This paper summarizes the relationship of the inverse
to the MC parameters. Details of the actual performance of
the adaptive array using the MC parametric approach will be
found in companion papers presented at the Asilomar 2006
and DASP 2006 conferences. For reference, we rst illustrate
the inversion formula in terms of the MC parameters in the
known covariance case, and show that the inverse can be ex-
pressed in terms of products of block triangular Toeplitz struc-
tures. Next, we reveal for the rst time the inverse obtained
from MC data using the MC covariance method of linear pre-
diction. Surprisingly, the structure of the inverse can still be
expressed in terms of products of block triangular Toeplitz
structures, which leads to fast computational solutions for the
optimal weight vectors (covered in the other conference pa-
pers).

2. MULTI-CHANNEL LINEAR PREDICTION
PARAMETRIC MODEL AND INVERSE FOR KNOWN

COVARIANCE

The MC forward linear prediction error (LPE) of model order
p for the MC signal x[n; r] of M channels at each realization
r is de ned as

eap[n; r] = x[n; r] +
p∑
k=1

Ap[k]x[n− k; r] (3)
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with dimension M × 1, in which Ap[k] are the MC forward
linear prediction parameter matrices of dimension M ×M .
This may be expressed in vector inner product form as

eap[n; r] =
(
I ap

)
xp[n; r] (4)

for which ap = (Ap[1] . . .Ap[p]) is a M ×Mp block row
vector of the MC forward LP parameters and

x[n; r] =

⎛
⎜⎝

x1[n; r]
...

xM [n; r]

⎞
⎟⎠ , xp[n; r] =

⎛
⎜⎝

x[n; r]
...

x[n− p; r]

⎞
⎟⎠
(5)

are M × 1 and M(p+1)× 1 column vectors, respectively, of
data samples. Similarly, the MC backward linear prediction
error (LPE) is de ned as

ebp[n; r] = x[n− p; r] +
p∑
k=1

Bp[k]x[n− p+ k; r]

=
(
bp I

)
xp[n; r]

(6)

for which bp = (Bp[p] . . .Bp[1]) is a 1× p block row vector
(scalar dimension: M×Mp) of the MC backward LP parame-
ters (note that the backward LP parameter vector has reversed
time indexing relative to the forward LP parameter vector).
The M ×M MC forward LPE variance is both de ned and
expressed as

Pap = E
{
eap[n](e

a
p[n])

H
}
=

(
I ap

)
Rp

(
I
aHp

)
(7)

in whichRp is the M×M MC block Toeplitz autocovariance
matrix [it is also hermitian symmetric with a scalar dimension
of M(p+ 1)×M(p+ 1) ]

Rp =⎛
⎜⎜⎜⎜⎜⎝

R[0] R[1] · · · R[p− 1] R[p]
R∗[1] R[0] · · · R[p− 2] R[p− 1]

...
...

. . .
...

...
R∗[p− 1] R∗[p− 2] · · · R[0] R[1]
R∗[p] R∗[p− 1] · · · R∗[1] R[0]

⎞
⎟⎟⎟⎟⎟⎠

(8)

composed of the stationary M ×M scalar-dimensioned MC
autocovariance matrix elements

R[m] =

⎛
⎜⎝

r11[m] · · · r1M [m]
...

. . .
...

rM1[m] · · · rMM [m]

⎞
⎟⎠ (9)

in which rjk[m] is the scalar cross-covariance between chan-
nels j and k at time lag index m. In a similar manner, the
M ×M MC backward LPE variance is given by

Pbp = E
{
ebp[n](e

b
p[n])

H
}
=

(
bp I

)
Rp

(
bHp
I

)
. (10)

The choices for the forward and backward LP parameters ap
and bp that minimize the variances Pap and Pbp can be shown
[3] to satisfy the pair of MC Yule-Walker normal equations

(
I ap

)
Rp =

(
Pap 0p

)
(11)

(
bp I

)
Rp =

(
0p P

b
p

)
(12)

in which 0p is a M ×Mp-array of all-zeros. De ne the M ×
M MC partial correlation coef cient

Δp = E
{
eap−1[n](e

b
p−1[n− 1])H

}
(13)

and the M × M MC lattice lter parameters Γap = Ap[p]
and Γbp = Bp[p]; note that Ap[p] �= Bp[p], in contrast to the
one-dimensional case where they were identical. The fast MC
Levinson algorithm [3] can solve the M(p+ 1)×M(p+ 1)
Eqs. 11 and 12 in a number of computational steps propor-
tional to (Mp)2, rather than proportional to the usual (Mp)3,
while avoiding the explicit formation of the block matrixRp.
Assuming the initialization Pa0 = P

b
0 = R[0], the four steps

of the MC Levinson-like recursion, that solves for the MC LP
parameters ak and bk and the MC LPE variances Pak and Pbk
over orders k = 1, . . . , p, are

Δk =
(
I ak−1

)
⎛
⎜⎝
R[k]

...
R[1]

⎞
⎟⎠ (14)

Γak = −Δk
(
Pbk−1

)−1
(15)

Γbk = −ΔH

k

(
Pak−1

)−1
(16)

(I ak) =
(
I ak−1 0

)
+ Γak

(
0 bk−1 I

)
(17)

(I bk) =
(
0 bk−1 I

)
+ Γbk

(
I ak−1 0

)
(18)

Pak =
(
I− ΓakΓbk

)
Pak−1 (19)

Pbk =
(
I− ΓbkΓak

)
Pbk−1 (20)

This algorithm reduces to 1-D Levinson recursion whenM =
1 (one channel).

The preferred form of the block Toeplitz inverse [3] [2]
which is useful to this project, and which also depends only
on the last parameter order computed, is

R−1
p = AH

pP
a
pAp −BH

pP
b
pBp (21)

in which the block triangular Toeplitz matrices are given as

Ap =

⎛
⎜⎜⎜⎜⎝

I Ap[1] · · · Ap[p]

0
. . .

. . .
...

...
. . .

. . . Ap[1]
0 · · · 0 I

⎞
⎟⎟⎟⎟⎠ (22)
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Bp =

⎛
⎜⎜⎜⎜⎝

0 Bp[p] · · · Bp[1]

0
. . .

. . .
...

...
. . .

. . . Bp[p]
0 · · · 0 0

⎞
⎟⎟⎟⎟⎠ (23)

Pap =

⎛
⎜⎜⎜⎜⎝

(Pap)−1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 (Pap)

−1

⎞
⎟⎟⎟⎟⎠ (24)

Pbp =

⎛
⎜⎜⎜⎜⎝

(Pbp)−1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 (Pbp)

−1

⎞
⎟⎟⎟⎟⎠ (25)

3. MULTI-CHANNEL COVARIANCE LEAST
SQUARES LINEAR PREDICTION PARAMETRIC

MODEL AND INVERSE

A full least squares minimization against all the MC linear
prediction parameter matrices ap and bp simultaneously is
the basis of the MC covariance method of least squares linear
prediction. To set up the problem for a least squares solution,
the MC forward LPE and MC backward LPE of order p can
be expressed as M × (N −p)R block row vectors when there
are a nite number of N samples and R realizations for M
channels

eap =
(
eap[p+ 1; 1] . . . e

a
p[N ;R]

)
=

(
I ap

)
Xp (26)

ebp =
(
ebp[N ; 1] . . . e

b
p[p+ 1;R]

)
=

(
bp I

)
Xp (27)

in which the M(p+1)×(N−p)R block rectangular Toeplitz
data matrixXp and M×R block data vectorX[k] are de ned
as

Xp =

⎛
⎜⎝
X[p+ 1] · · · X[N − p] · · · X[N ]

...
. . .

. . .
...

X[1] · · · X[p+ 1] · · · X[N − p]

⎞
⎟⎠

(28)
X[k] =

(
x[k; 1] · · · x[k;R]

)
(29)

The magnitude squared error sums [or variance estimates, if
divided by (N − p)R] can then be expressed as

P̂ap = eap(e
a
p)

H (30)

P̂bp = ebp(e
b
p)

H (31)

Minimizing the trace of each of these estimated variances [3]
then leads to the following (p+1)-block-dimensioned normal
equations

(
I ap

) (
XpX

H

p

)
=

(
P̂ap 0p

)
(32)

(
bp I

) (
XpX

H

p

)
=

(
0p P̂

b
p

)
(33)

In general, the MC forward and backward LP parameters in
the least squares case are not complex conjugates of the other,
unlike the situation in the one-channel known autocovariance
case. Comparing Eqs. 32 and 33 to the recursions in the
known covariance case of the previous section, one can see
that the block non-Toeplitz (p + 1) × (p + 1) least-squares-
based product matrixXpX

H

p has replaced the role of the block
Toeplitz (p+ 1)× (p+ 1) autocovariance matrixRp. When
the MC covariance least squares linear prediction algorithm
is used, the inverse

(
XpX

H

p

)−1
will be used in lieu of R−1

p

in all the detection statistics discussed in [5]. Despite the fact
that least-squares normal Eqs. 32 and 33 do not have a block
Toeplitz matrix, the non-ToeplitzXpX

H

p matrix is the product
of two rectangular-shaped block Toeplitz data matrices Xp
and XH

p . This is suf cient to generate an order-recursive fast
computational algorithm that requires a number of compu-
tational operations proportional to p2, rather than the usual
solution proportional to p3, to solve simultaneously for both
forward ap and backward bp MC LP parameters. The MC
least-squares-based fast algorithm requires the introduction of
two additional gain adjustment vectors, de ned as

cp
(
XpX

H

p

)
= xHp [N ] = (x

H [N ] . . .xH [N − p]) (34)

dp
(
XpX

H

p

)
= xHp [p+ 1] = (x

H [p+ 1] . . .xH [1]) (35)

in which theR×(p+1)M gain vectors are cp = (cp[0] . . . cp[p])
and dp = (dp[0] . . .dp[p]). We will also need to de ne the
M ×M gain vector variances

Pcp = I− xp[p+ 1]
⎧⎩XpXH

p

⎫⎭−1

xHp [p+ 1] (36)

Pdp = I− xp[N ]
⎧⎩XpXH

p

⎫⎭−1

xHp [N ] . (37)

Note that trace tr{Pcp} ≥ 0 and trace tr{Pdp} ≥ 0. The key
MC Levinson-like order-update recursions in the MC covari-
ance least squares linear prediction case are

(
I ap

)
=

(
I ap−1 0p

)
+ Γap

(
0p b

t−adj
p−1 I

)
(38)

(
I bp

)
=

(
0p b

t−adj
p−1 I

)
+ Γbp

(
I ap−1 0p

)
(39)

and the time-adjusted LP parameter bt−adjp time-update re-
cursion has the form

bt−adjp = bp + C1cp−1 + C2dp−1 (40)

for unspeci ed M ×M matrix constants C1 and C2. Similar
order and time updates for cp, dp, e

c
p[n], and edp[n] are a part

of the fast MC algorithm, but not shown here.
The inverse matrix

(
XpX

H

p

)−1
can be explicitly expressed

as

(
XpX

H

p

)−1 =ApP
a
pA

H

p −BpPbpBH

p

+Cp−1P
c
pC

H

p−1 −Dp−1P
d
pD

H

p−1

(41)

II  1139



in which the block triangular Toeplitz matrices are

Ap =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I 0 · · · 0 0
Ap[1] I · · · 0 0

...
. . .

. . .
...

...

Ap[p− 1] Ap[p− 2] . . . I 0
Ap[p] Ap[p− 1] · · · Ap[1] I

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(42)

Bp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 · · · 0 0
Bp[p] 0 · · · 0 0

...
. . .

. . .
...

...

Bp[2] Bp[3]
. . . 0 0

Bp[1] Bp[2] · · · Bp[p] 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(43)

Cp−1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 · · · 0 0
cp−1[0] 0 · · · 0 0

...
. . .

. . .
...

...

cp−1[p− 2] cp−1[p− 3] . . . 0 0
cp−1[p− 1] cp−1[p− 2] · · · cp−1[0] 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(44)

Dp−1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 · · · 0 0
dp−1[0] 0 · · · 0 0

...
. . .

. . .
...

...

dp−1[p− 2] dp−1[p− 3] . . . 0 0
dp−1[p− 1] dp−1[p− 2] · · · dp−1[0] 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(45)

Pap =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
Pap

)−1
0 · · · 0 0

0
(
Pap

)−1 . . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . .
(
Pap

)−1
0

0 0 · · · 0
(
Pap

)−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(46)

are formed from the forward linear prediction parametersAp[m],
forward linear prediction squared error variance Pap, back-
ward linear prediction parameters Bp[m], backward linear
prediction squared error variance matrix Pbp, gain adjustment
block vector parameters cp[m] and dp[m], and matrix gain
adjustment variances Pcp and Pdp. These are de ned as ma-
trix equations associated with the covariance linear prediction
case. The structures of Pbp, P

c
p, and Pdp are similar to that

shown for Pap.
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