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ABSTRACT

In this paper, a new technique is proposed for estimating the
total spatial power spectral density (PSD) caused by multiple inco-
herently distributed sources. Our approach is based on the fact that
the array covariance matrix can be represented through the moments
of the spatial PSD. Based on this representation, we develop a com-
putationally ef cient technique to estimate the moments from the
array covariance matrix. The so-obtained moments are then used to
estimate the total spatial PSD.

Index Terms— Source localization, spread source, covariance
tting, distributed source, spatial power spectral density.

1. INTRODUCTION

Array processing based on point source modeling has been the focus
of numerous research efforts during the past three decades. How-
ever, in applications such as underwater acoustics, passive sonar, and
wireless communications, the signal emitted by a source is scattered
by the objects in the vicinity of the source. As a result, point source
modeling cannot be a realistic signal representation in such applica-
tions. In fact, a distributed source modeling seems to be a promising
way to characterize the signal sources [1].

Several methods have been presented in the literature for lo-
calization of distributed sources [1]-[8]. A majority of localization
methods published in this eld assumes that the signal distribution
can be parameterized by the source central angle and its angular
spread. This assumption may however not be realistic.

In this paper, we study the problem of estimating the total spatial
power spectral density caused by multiple incoherently distributed
(ID) sources. we show that when ID sources are assumed to be un-
correlated, there is a certain ambiguity that does not allow the indi-
vidual source PSD be estimated from the array covariance matrix.
However, if the array covariance matrix is represented through the
total spatial PSD of all ID sources, one can estimate this PSDwithout
any ambiguity. Based on this fact, we develop a covariance tting
technique to estimate the total spatial PSD from the array covariance
matrix. Our approach is based on estimating the moments of the
total spatial PSD from the covariance matrix. Then the so-obtained
estimates are used to estimate the total spatial PSD.

2. DATA MODEL

Assume that the signals of q distributed sources impinge on a uni-
form linear array (ULA) of p sensors that are spaced half a wave-
length apart. The sources are assumed to be stationary and narrow-

band with the same central frequency. Based on such assumptions,
the baseband representation of the array output is given by [1], [2],
[3]

x(t) =

q∑
m=1

∫ π

2

− π

2

a(ν)sm(ν, t)dν + n(t), (1)

where x(t) is the p × 1 vector of the complex array outputs, n(t)
is the p × 1 vector of noise, sm(ν, t) is the complex random time-
varying signal distribution of the mth source at spatial frequency
ν � π sin θ, and θ is the direction of arrival. Also, a(ν) is the p× 1
vector of the array response to a source with spatial frequency ν and
it is de ned as

a(ν) = [1 ejν ej2ν · · · , ej(p−1)ν ]T (2)

where (·)T denotes the transpose. Note that θ = 0 corresponds to
the broadside of the array, and therefore θ ∈ [−π

2
, π

2
].

Assuming that the sources and noise are uncorrelated, the array
covariance matrix can be written as

Rxx � E{x(t)xH(t)} = σ2
I+

q∑
m,n=1

∫ π

2

− π

2

∫ π

2

− π

2

pmn(ν, ν′)a(ν)aH(ν′) dν dν′ (3)

where σ2 is the unknown noise power, I is the identity matrix, E{·}
is the statistical expectation operator, (·)H denotes the Hermitian
transpose, the function pmn(ν, ν′) is de ned as

pmn(ν, ν′) � E{sm(ν, t)s∗n(ν′, t)} (4)

and (·)∗ stands for the complex conjugate. In fact, pmn(ν, ν′) rep-
resents the cross-correlation between the signals of themth and nth
sources that arrive at the array with the spatial frequencies ν and ν′,
respectively. Let us assume that all distributed sources are mutually
uncorrelated. This means that

pmn(ν, ν′) = pmm(ν, ν′)δmn (5)

where δmn is the Kronecker delta. Also, throughout the paper, we
consider the ID source model. A distributed source is said to be ID
if its components arriving from different directions (or with different
spatial frequencies) are uncorrelated. That is, for themth source, we
assume that

pmm(ν, ν′) = σ2
m ρm(ν) δ(ν − ν′) (6)
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where δ(ν − ν′) is the Dirac delta-function, σ2
m is the power of

themth source, and ρm(ν) ismth source normalized spatial power
spectral density (SPSD) satisfying

∫ π

2

− π

2

ρm(ν) dν = 1, m = 1, 2, . . . , q . (7)

The index m in ρm(ν) is used to emphasize that the sources can
have different SPSDs. Using (5) and (6), we can rewrite (3) as

Rxx =

q∑
m=1

∫ π

2

− π

2

σ2
m ρm(ν)a(ν)aH(ν) dν + σ2

I . (8)

Using (8), we have proposed a covariance tting based method,
for parametric localization of multiple ID sources [3]. This method
is based on two assumptions. First, it is assumed that q, the number
of ID sources, is known, and second, the source SPSDs {ρm(ν)}q

m=1

are assumed to be parameterized functions that are known up to two
parameters: the source central angles and angular spreads1. How-
ever, these two assumptions may not be realistic. The number of
sources may not be known, and to the best of our knowledge, no
method has been presented in the literature for detecting the num-
ber of multiple ID sources. This leaves the problem of ID source
enumeration open for future research efforts. Also, in practice, the
shape of source SPSDsmay not be known, and as a result, the second
assumption of [3] may not be realistic.

It is also noteworthy that using the covariance matrixRxx in (8)
for parametric localization of ID sources (i.e., estimating the source
parametric SPSDs) causes a certain ambiguity. More speci cally,
there exist in nite number of sets {ρm(ν)}q

m=1 that all can produce
the same covariance matrix. To show this, we need to introduce the
notion of the total SPSD that is caused by several ID sources.

3. TOTAL SPATIAL POWER SPECTRAL DENSITY

Let us rewrite (8) as

Rxx =

∫ π

2

− π

2

σ2
sρT (ν)a(ν)aH(ν) dν + σ2

I (9)

where the following de nitions are used:

σ2
s �

q∑
m=1

σ2
m (10)

ρT (ν) �

q∑
m=1

σ2
m

σ2
s

ρm(ν) . (11)

We call ρ(ν) the total spatial power spectral density. It follows from
(7), (10), and (11) that

∫ π

2

− π

2

ρT (ν)dν = 1. (12)

As can be seen from (11), there exists in nite number of sets
{ρm(ν)}q

m=1 that all can result in the same total SPSD, or equiv-
alently, in the same covariance matrix Rxx. Therefore, using the
covariance matrix Rxx to estimate the source SPSDs can result in

1Note that the notation used here is slightly different from that used in
[3]. In fact, we herein use the source SPSD, ρm(ν) to characterize the mth
source while in [3], the angular power density, ρm(θ) has been used for the
same purpose.

ambiguous estimates of these SPSDs. However, one might still be
able to use the covariance matrix to estimate the total SPSD ρT (ν)
without any ambiguity. We will show how this is possible in the next
section.

It is also noteworthy that the method of [3] cannot be used to
estimate the total SPSD ρT (ν), (for example, by assuming q = 1).
Indeed the method of [3] is applicable to the case where the source
SPSD is a parametric function of the source central angle and angu-
lar spread parameters. However, ρT (ν) may not be parameterized
by only these two parameters.

4. TOTAL SPATIAL PSD ESTIMATION

In this section, we develop a method to estimate the total SPSD. Let
us de ne the matrix A(ν) as A(ν) � a(ν)aH(ν). Noting that the
element (k, l) of A(ν) is given by [A(ν)]kl = ej(k−l)ν , the Taylor
series representation ofA(ν) is given by

A(ν) =

∞∑
n=0

(ν − ν̃0)
n

n!
A

(n)(ν̃0) (13)

where ν0 is an arbitrary spatial frequency,A(n)(ν) is the nth deriva-
tive ofA(ν) and its (k, l) element is given by [A(n)(ν)]kl = (j(k−

l))nej(k−l)ν . Using (13), we can rewrite (9) as

Rxx =

∞∑
n=0

σ2
sMn(ν̃0)

n!
A

(n)(ν̃0) (14)

whereMn(ν̃0) is the nth moment, computed at ν̃0, of the total SPSD
ρT (ν) and it is de ned as

Mn(ν̃0) �

∫ π

2

− π

2

(ν − ν̃0)
nρT (ν)dν . (15)

Let us de ne the center mass of ρT (ν) as

ν0 =

∫ π

2

− π

2

νρT (ν)dν . (16)

If we choose ν̃0 = ν0, then the moments in (15) (i.e. {Mn(ν0)}
∞
n=0)

represent the central moments of the total SPSD. We now show that
the total SPSD can be represented through its central moments. To
do this, we de ne the function φ(z) as

φ(z) = e−jzν0Fz{ρT (ν)} (17)

where Fz{·} denotes the Fourier transform of the function in the
argument. Noting that

φ(z) =

∫ +π

−π

ρT (ν)e−jz(ν−ν0)dν (18)

and using the fact that the nth derivative of φ(z) at z = 0 is given
by

φ(n)(0) = (−j)n

∫ +∞

−∞

(ν − ν0)
nρT (ν)dν = (−j)nMn(ν0)

(19)
the Maclaurant series expansion for φ(z) can be written as

φ(z) =
∞∑

n=0

φ(n)(0)

n!
zn =

∞∑
n=0

Mn(ν0)

n!
(−jz)n. (20)
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Note that ρT (ν) can be obtained from φ(z) as

ρT (ν) = F−1
z {ejzν0φ(z)} (21)

where F−1
z {·} represents the inverse Fourier transform of the func-

tion in the argument. Using (20) and (21), we obtain that

ρT (ν) =
1

2π

∫ +∞

−∞

∞∑
n=0

Mn(ν0)

n!
(−jz)ne−jz(ν−ν0)dz . (22)

Equation (22) represents the relationship between the total SPSD
and its central moments. Therefore, if negligible terms in (22) are
ignored, ρT (ν) can be obtained through its prominent central mo-
ments. In the next section, we show how the central moment of
ρT (ν) can be obtained from the covariance matrixRxx.

5. COVARIANCE FITTING

Let us de ne the N -term approximation of the covariance matrix
Rxx as

R̃
N
xx(ν̃0) =

N−1∑
n=0

σ2
sMn(ν̃0)

n!
A

(n)(ν̃0) . (23)

Denoting the corresponding approximation error as

ξN (ν̃0) = ‖Rxx − R̃
N
xx(ν̃0)− σ2

I‖2 (24)

where ‖ · ‖ represents the Frobenius norm, the non-central moments
can then be estimated by solving the following optimization prob-
lem:

min
m(ν̃0)

ξN(ν̃0) (25)

wherem(ν̃0) is the (N + 1)× 1 vector whose nth entry is given by

[m(ν̃0)]n+1 =

{
σ2

sMn(ν̃0) for n = 0, 1, 2, · · · , N − 1
σ2 for n = N

(26)
It can be readily shown that the non-central moments can be

obtained by solving the following set of linear equations:

Q(ν̃0)m(ν̃0) = b(ν̃0) . (27)

In (27),Q(ν̃0) is an (N +1)× (N +1)matrix whose (r, s) element
is de ned as

[Q(ν̃0)]rs = α
H
r αs (28)

and b(ν̃0) is an (N + 1)× 1 vector whose rth element is given by

[b(ν̃0)]r = α
H
r vec{Rxx} (29)

where vec{·} is the vectorization operator, and αr is de ned as

αr+1 �

{
1
r!

vec {Ar(ν̃0)} for 0 ≤ r ≤ N − 1
vec{I} for r = N .

(30)

The solution to (27) is given by

m(ν̃0) = Q
−1(ν̃0)b(ν̃0) . (31)

Therefore, using the fact that [m(ν̃0)]1] = σ2M0(ν̃0) = σ2 holds
true for any ν̃0, the remaining moments {Mn(ν̃0)}

N−1
n=1 can be ob-

tained as

Mn(ν̃0) =
[m(ν̃0)]n+1

[m(ν̃0)]1
for n = 1, 2, · · · , N − 1 . (32)

Note however that in order to approximate ρT (ν), we need to
obtain the cental moments, i.e., we have to obtain m(ν̃0) for ν̃0 =
ν0, but ν0 is yet to be estimated. To cope with this problem, one
can use the iterative method proposed in [3] to estimate ν0. The
essence of this iterative method is based on an interesting property
ofM1(ν̃0) given by

M1(ν̃0) = ν0 − ν̃0 . (33)

It follows from (33) that given M1(ν̃0), the mass center ν0 can be
obtained as

ν0 = ν̃0 + M1(ν̃0). (34)
Note that in practice, only an estimate ofM1(ν̃0) is available not its
true value. Hence, in order to improve the quality of the estimate
of ν0, the iterative method of [3] uses ν0 obtained from (34) as a
new value for ν̃0 in (31) and computes a new value form(ν̃0), and
consequently, a new value for M1(ν̃0). Then (34) is used to update
ν0. This technique is repeated a few times to improve the accuracy
of the so-obtained ν0.

We end up this section by mentioning that choosingN , plays an
important role in obtaining the moments precisely. To chooseN , one
can use the normalized covariance tting error (NCFE) error de ned
as

eN �
ξN(ν0)

‖Rxx‖2
. (35)

More speci cally, one can start with a reasonable N , compute eN ,
and increase N by one. if eN − eN+1 is negligible, the iteration
is stopped. Otherwise N is increased by one and the algorithm is
repeated.

The proposed algorithm is summarized as it follows.
1. Estimate the covariance matrix with its sample covariance
matrix R̂xx = 1

T

∑T

t=1 x(t)xH(t) where T is the number
of available snapshots.

2. Choose ν̃0.
3. Select an initial value forN and set eN−1 to 1.
4. Construct the set of matricesA(n)(ν̃0), n = 0, 1, 2, . . . , N−

1.
5. ComputeQ(ν̃0) and b(ν̃0) as in (28) and (29), respectively.
6. Obtainm(ν̃0) = Q−1(ν̃0)b(ν̃0).
7. Calculate ν0 as in (34).
8. Set ν̃0 = ν0 and repeat steps 4-7, a few times, to improve the
accuracy of ν0 estimate.

9. Compute the NCFE as in (35).
10. If eN − eN−1 is negligible go to 11,

else N = N + 1 and go to 4.
11. Compute ρT (ν) as in (22).

6. SIMULATION RESULTS

We consider a scenario where the signals of two ID sources with
Gaussian SPSD impinge on an array of p = 21 sensors. The sources
are assumed to have the same signal-to-noise ratios (SNRs) de ned
as σ2

m/σ2. The sources’ central angles are 5o and 35o and their an-
gular spreads amount to a spatial frequency standard deviation of 0.2
in radians. We use T = 500 independent snapshots to calculate the
sample covariance matrix. It is easy to show that in this scenario, the
center spatial frequency is given by ν0 = 1

2π
(sin−1 5o+sin−1 35o).

Also, we choose ν̃0 = 1.2rad.
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Fig. 1. The normalized covariance tting error versus N.

Fig. 1 shows the NCFE, eN for different values of N . Figs. 2
and 3 show the mean square error (MSE) of estimates for even and
odd indexed moments, respectively. Note that M0(ν0) = 1 always
holds true and therefore the NMSE for the M0(ν0) is not shown in
Fig. 2. Also, as the SPSD is symmetric with respect to ν0, the odd-
indexed moments are zero and therefore their estimates have very
small values. It is worth mentioning that as true odd-index moments
are all equal to zero, the MSEs shown in Fig. 3 are the square of the
corresponding odd-indexed moment estimates.

As can be seen from Fig. 1, the NCFE drops sharply for N >
20. Also, Fig. 2 shows that the quality of even-indexed moment
estimates is signi cantly improved forN > 20 and at the same time,
the MSE for odd-indexed moment estimates remains below -50 (dB).

7. CONCLUSION

A new method has been proposed for estimating the total spatial
power spectral density (SPSD) caused by several incoherently dis-
tributed sources. We have shown that this density can be obtained
from its prominent central moments. Also, we have proven that the
array covariance matrix can be approximated by means of the central
moments of the SPSD. Based on such a covariance approximation,
we have herein proposed a covariance tting approach to estimate
the prominent central moments of the SPSD. The so-obtained cen-
tral moments can then be used to estimate the SPSD itself.
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