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ABSTRACT

For cases where the number of training samples T does not ex-
ceed the number of antenna elements M , we consider a detection-
estimation problem for Gaussian sources occupying a low-rank m-
dimensioned signal subspace within the associated covariance ma-
trix (m < T < M ). We derive a likelihood ratio that for the null
hypothesis is described by a probability function that does not de-
pend on a scenario, and investigate a (non-trivial) correspondence
between the likelihood function and the derived likelihood ratio with
respect to maximization performance. Practical application of this
technique is illustrated for under-sampled (T < M ) conditions for
the purpose of MUSIC performance enhancement in the “threshold”
region.

Index Terms— Array signal processing, Maximum likelihood
estimation, Adaptive estimation.

1. INTRODUCTION AND PROBLEM FORMULATION

When a covariance matrix of a Gaussian mixture, impinging upon an
M -variate antenna array, belongs to an a priori restricted class, spec-
ified by a limited number of parameters, one can consider address-
ing the detection-estimation problem having less training samples T
than the antenna dimension M (the “under-sampled” regime). One
of the well-known families of this kind, considered in this paper, is
the “low-rank” signal subspace one where an admissible covariance
matrix could be described as:

R = σ2
0IM +RS ; RS = UmΛ0U

H

m; Λ0 = Λm − σ2
0Im (1)

where Um ∈ CM×m and Λm ∈ Rm×m
+ are the (M × m)-variate

and (m × m)-variate matrices of signal subspace eigenvectors and
positive eigenvalues respectively.

For strong enough signal-to-noise ratio (SNR), the MUltiple SIg-
nal Classification (MUSIC) algorithm can provide accurate DOA es-
timates, based on T training snapshots, equal to the number of in-
dependent sources m. Similarly, the well-known Wax-Kailath ITC
criteria may address the detection problem (i.e. estimation of the
number of sources m), if T > M [1]. Yet, below some “threshold”
SNR, the MUSIC “breaks down”, which means that the DOA esti-
mation accuracy rapidly departs from the Cramer-Rao Lower Bound
(CRLB), due to generation of erroneous DOA estimates (’“outliers”).

The mechanism of this breakdown is well investigated in [2] and
is proven to be MUSIC-specific, associated with the so-called “sub-
space swap”. Maximum likelihood estimation (MLE) also breaks
down at the point where solutions with completely erroneous DOA
estimates (outliers) generate a likelihood function (LF) value that
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exceeds the LF value produced by the true covariance matrix, or
even the local LF extremum in the vinicity of the true covariance
matrix [3].

Investigations of ML “performance breakdown” (threshold) con-
ditions are continuing [4, 5], but it has already been demonstrated
that there typically is a large “gap” in required SNR, source sepa-
ration or sample support between MUSIC-specific and ML-intrinsic
threshold conditions [6, 7]. Moreover, in [6], we were able to pro-
pose a ML-based technique for detection of MUSIC-specific outliers
and rectification of the “broken-down” MUSIC solution by replacing
the outlier with a proper DOA estimate that increases the ML value
beyond a certain expected (threshold value). Specifically, we consid-
ered a normalized version of the LF, such that for the null hypothesis
(.e. when the model coincides with the actual covariance matrix), its
probability function does not depend on the actual covariance matrix
and is fully specified by T and M only. This invariance property al-
lowed for precalculation of a threshold value that must be exceeded
by this normalized LF (likelihood ratio, LR) of the actual covari-
ance matrix, with a certain (high) probability. We then demonstrated
the high efficiency of this practical LR-based MUSIC “performance
breakdown prediction and cure” routine, referred to in this paper as
GLRT-PAC.

The most important limitation of this routine is that it may oper-
ate only in the properly sampled (Wishart) training condition (T �
M ), since for this condition the LF could be accurately normalized.
Of course, for multi-variate training data xt, t = 1, . . . , T xt ∼
CN(0, R0), where R0 is the underlying actual (true) covariance ma-
trix, the likelihood function exists and is non-degenerate even under
under-sampled (T < M ) conditions:

L(XT , R) =

[
1

πM detR
exp{−Tr [R̂R-1]}

]T

(2)

where the sample covariance matrix R̂ = 1
T

∑T
j=1 xjx

H
j .

For (T � M ), the normalized version of the LF (2) is given by:

LR(R) =
L(XT , R)

maxR L(XT , R)
=

[
det R̂R-1 expM

exp{Tr R̂R-1}

]T

< 1, (3)

which, as a function of R, is identical to the LF (2), and at the same
time is described by the required scenario invariant p.d.f. for R =
R0. However, for T < M , a unique and identical to the LF (2)

normalized likelihood ratio LRu(R) does not exist (since det(R̂) =
0), preventing the direct application of the GLRT-PAC routine to the
under-sampled regime.

To address this shortfall, in [8] we introduced an appropriately
invariant likelihood ratio, based on considering a subset of the sam-

ple covariance matrix R̂ entries and application of a specific Dym-

Gohberg transformation to the matrix [R̂R-1]. In [9] we showed
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that this approach for a practically important case allows for MUSIC
performance improvement in the threshold area with under-sampled
(anti-Wishart) training conditions.

Yet, this particular ad-hoc criterion has not been directly derived
for the model (1) and most importantly, distinctions between the
likelihood function (2) maximization and the under-sampled like-
lihood ratio LRu has not been explored. In this paper, we derive a
different likelihood ratio, and analyze distinctions between the max-
imum likelihood function and maximum likelihood ratio solutions
for T < M . Finally, we investigate the gap between the theoretical
ML-based “performance breakdown” and breakdown conditions for
our practical GLRT-PAC routine.

2. LIKELIHOOD RATIO FOR UNDER-SAMPLED
TRAINING CONDITION

Let the eigen-decomposition of the sample covariance matrix R̂ for
T < M be presented as

R̂ = ÛT Λ̂T ÛH

T , ÛH

T ÛT = IT , Λ̂T = diag(λ̂1, . . . , λ̂T )). (4)

Then any inference about the covariance matrix model Rmod may
be provided only regarding its “projection” unto the linear subspace

spanned by the [M×T ]-variate matrix of eigenvectors ÛT associated
with the T non-zero eigenvalues.

Therefore, for any given Rmod, we have to define such a projec-
tion, i.e. we have to find the rank T Hermitian matrix

RT = ÛT DT ÛH

T , 0 � DT ∈ HT×T
(5)

which in a certain sense is the “closest” to the model Rmod. The
way we specify DT , given Rmod, actually specifies distinctions be-
tween the original (unnormalized) likelihood function and the under-
sampled likelihood ratio.

Let us consider the matrix pencil

(ÛT DT ÛH
T )Vj = μjRmodVj , Vj �= 0 (6)

with det[ÛT DT ÛH
T − μjRmod] = 0 (7)

and V H
j (ÛT DT ÛH

T )Vj = μjV
H

j RmodVj (8)

V H
j RmodVl = δjl, (δjl = kroneker delta). (9)

For all μj > 0 (j = 1, . . . , T ), the set of corresponding T
linearly independent eigenvectors Vj span the linear subspace that is

identified by the matrix ÛT . Therefore, if we can find a solution DT

such that in (6), μ1 = μ2 = · · · = μT = 1, then the two matrices
ÛT DT ÛH

T and Rmod within the subspace spanned by UT , may be
treated as being properly normalized.

It is straightforward to show that such a solution uniquely exists:

DT = (ÛH

T R-1
modÛT )

-1, (10)

and therefore, given an arbitrary p.d. covariance matrix model Rmod,
we can make an inference about its “projection”

RT = ÛT (ÛH

T R-1
modÛT )

-1ÛH

T (11)

based on the provided sufficient statistics R̂.
It is important to note, that for any Rmod in (11), RT is now

an admissible singular covariance matrix for the input data xj , j =
1, . . . , T . In fact, the main distinction for the LF (2) that always
considers a p.d. admissible covariance matrix is expanded for T <
M into the domain of singular admissible p.d.f’s.

Indeed, a singular complex Gaussian p.d.f. is specified by a sin-
gular covariance matrix RS = USΛSUH

S when a random M -variate
vector x fully resides in the subspace spanned by US ; i.e. when

[I − USUH

S ]x = 0, (12)

and the p.d.f. w(x) is introduced as

w(x) =
1

πM detΛS
exp

[
−xHUSΛ

-1
S UH

Sx
]

(13)

For XT = [x1, . . . , xT ] such that [I − USUH
S ]xj = 0 for all j,

we have

w(XT ) =

[
1

πM detΛS
exp

[
−Tr USΛ

-1
S UH

SR̂
]]T

(14)

and therefore, for our specific case we now may consider the singu-
lar likelihood function

LS(XT |Rmod) =

⎡
⎣ exp

[
−Tr ÛT (ÛH

T R-1
modÛT )ÛH

T R̂
]

πM det[ÛH
T R-1

modÛT ]-1

⎤
⎦

T

(15)

One can see that the main distinction between L(XT , Rmod) in (2)
and LS (15) is that instead of det(Rmod) in the denominator of (2),

we now have the determinant of the T -variate matrix [ÛH
T R-1

modÛT ]
-1.

Now we can find (see Lemma 3.2.2 from Anderson [10])

max
Rmod>0

LS(XT |Rmod) �
[
det[(ÛH

T R̂ÛT )
-1] exp(−T )

πM

]T

(16)

with the maximum obtained for [ÛH
T R-1

modÛT ] = Λ̂-1
T that finally

leads to the properly normalized likelihood ratio

LRu(XT |Rmod) =
Lu(XT |Rmod)

maxRmod Lu(XT |Rmod)

=

⎡
⎣det Λ̂T (ÛH

T R-1
modÛT ) expT

exp
[
Tr (ÛH

T R-1
modÛT )Λ̂T

]
⎤
⎦

T

≡
[
det(XH

T R-1
modXT /T ) expT

exp
[
Tr (XH

T R-1
modXT /T )

]
]T

, T � M (17)

Now the introduced likelihood ratio has a very straight-forward inter-
pretation. Indeed, the likelihood ratio (17) now tests the hypothesis

H0 : E{XH
T R-1

modXT /T} = IT versus (18)

H1 : E{XH
T R-1

modXT /T} �= IT (19)

with E{·} as the expectation operator. In fact, the LRu(XT |Rmod)

tests the “quality” of the pre-whitened (degenerate) matrix Ĉmod

Ĉmod = R
− 1

2
modXT XH

T R
− 1

2
mod (20)

More specifically that this test checks how close to unity are the non-
zero eigenvalues of the “pre-whitened” matrix Ĉ.

It is quite clear that for the null-hypothesis in (18) when Rmod =
R0, the distribution of LRu(XT |R0) does not depend on R0. This
p.d.f. has been previously derived in [11] via Mellin’s transform of
the moment function:

E{[LRu(XT |R0)]
h} =

MTM exp[Th]

(M + h)T (M+h)

T∏
j=1

Γ(M + h+ 1− j)

Γ(M + 1− j)
, T � M. (21)

where Γ(x) represents the Gamma function.
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3. MAXIMUM LIKELIHOOD VERSUS MAXIMUM
SINGULAR LIKELIHOOD RATIO COMPARISON

It seems quite obvious that the introduced singular likelihood ratio
(17) and, in general, any reliable inference about a positive definite
model Rmod could be successful only if a (T < M )-variate sub-
space spanned by the training data accurately enough spans the un-
known (estimated) subspace of the covariance matrix model Rmod.

In our problem, we deal with the model

Rmod = σ2
0I + SmBmSH

m (22)

where Bm � 0 is the m-variate inter-source Hermitian correla-
tion matrix (Bm = diag{σ2

1 , . . . , σ2
m} for independent sources)

and Sm = [S(θ1), . . . , S(θm)] ∈ CM×m is the set of antenna
steering vectors, specified uniquely by the set of DOA parameters
{θ1, . . . , θm}, and T � m.

The condition T � m, while clearly necessary, may only be
(practically) sufficient if the complementary (M − T )-variate sub-
space in the model (22) is fixed, which means that the white noise
power σ2

0 is known a priori. Otherwise, the sample support T should
significantly exceed the (maximal) number of sources to allow for
proper estimation of the noise subspace of the model.

For this reason, let us consider the case when the white noise
power σ2

0 is known a priori, in order to secure sufficiently high po-
tential DOA estimation performance. Still, even under the known
white noise power, a T -variate sample subspace does not entirely
span the m-variate (T � m) antenna manifold subspace Sm. There-
fore, the strict equivalence between the likelihood function and the
under-sampled likelihood ratio (17) does not exist, but a “sufficiently
accurate” statistical equivalence may.

From a practical viewpoint, we must be interested whether the
(global) maximization of the likelihood function (2) can provide sig-
nificantly better DOA estimation accuracy than the (global) LRu

(17) optimization. The estimation accuracy metric, as usual, means
the proximity to the CRLB, and involves both an “asymptotic” regime
(no outliers) as well as a “threshold” regime where the ML criterion
starts to break. Apart from theoretical interest, this analysis has quite
a straight-forward practical application.

Indeed, the central idea of the GLRT-PAC technique [6, 9] is
based on the invariance property of the LRu(XT |R0), which allows
for the setup of pre-calculated thresholds, above which the likelihood
ratio should be driven. Naturally, we must be sure that by driving
the likelihood ratio above such values produced (statistically) by the
true covariance matrix R0, we simultaneously drive the likelihood
function beyond the clairvoyant value as well. For T � M , the
likelihood ratio (3) is precisely a scaled version of the likelihood
function (2), while for T < M , this property needs to be verified for
the introduced LRu(XT |Rmod) (17).

Unfortunately, since we are concerned with the “gap” between
MUSIC-specific and ML-intrinsic breakdown, global LF or LR max-
imization cannot be easily implemented or substituted by an approx-
imately convex problem. For this reason, in our analysis of the
Monte-Carlo simulations, we have adopted the following approach.
For a given scenario, specified by the (true) covariance matrix R0

(with independent sources)

R0 = σ2
0I +

∑
σ2

j S(θj)S
H(θj) (23)

for every Monte-Carlo trial that result in the sample matrix R̂ (T <
M ), we calculatedL(XT , RMUSIC) andL(XT , RL)where RMUSIC

is the covariance matrix model (22) restored using the MUSIC DOA

estimates θ̂j , j = 1, . . . , m. The number of sources m in this study

is assumed to be known a priori, while the source power estimates

that match R̂ for the known white noise power σ2
0 and DOAs θ̂j are

calculated in the traditional way.
The likelihood function L(XT , RL) represents the LF found by

an optimization routine converging to a local extremum after being
initiated by the actual (true) parameters θj , σ2

j in the model R0. Note
that the asymptotic theory of ML estimation considers this local ex-
tremum as the global one.

In the same way, we also calculate LRu(XT , RMUSIC) and
LRu(XT , RL). Then for every result RMUSIC such that

L(XT |RMUSIC) < L(XT , RL), (24)

we apply the particular LF optimization routine derived in [6, 9].
That routine consists of outlier identification, outlier replacement by
a DOA estimate that finds the LF maximum via a 1-D search, and
finally local refinement of all the DOA estimates.

In what follows, we consider for further assessment only the set
of successful trials, whereby

L(XT , Ropt) � L(XT , RL). (25)

Clearly, if the strict inequality in (25) takes place, RL is not a global
extremum, and if Ropt in this case still contains an outlier, then an
ML “breakdown” instance is realized. The ML DOA estimation ac-
curacy is now averaged over the set of successful trials Ropt that
passed the comparison (25).

Similar optimization and analysis has also been performed for
the LRu(XT |Rmod) values, ie. for every RMUSIC with

LRu(XT , RMUSIC) < LRu(XT , RL) (26)

we tried to find a “successful” solution with

LRu(XT , Ropt) � LRu(XT , RL) (27)

Finally, using the invariance property of the p.d.f. for LRu(XT , R0)
(see (21)), we find the threshold α, such that

prob{LRu(XT , R0) � α} = P0, (28)

and for all MUSIC results where LRu(XT , RMUSIC) < α we use
the GLRT-PAC routine [9], to find an solution such that

LRu(XT , Rpac) � α (29)

Clearly, the DOA estimation accuracy averaged over the set of
Ropt that meet the condition (25), represent the a proxy for MLE,
even if these solutions retain a number of outliers.

Estimation accuracy, averaged over the set of trials that passed
the likelihood ratio comparison (27) allows us to assess the potential
estimation performance losses associated with adopting the practical
under-sampled LRu(XT , Rmod) instead of the unnormalized like-
lihood function (2).

Finally, the set of solutions Rpac that meet condition (28) il-
lustrates the practically delivered improvement in MUSIC DOA es-
timation accuracy by the GLRT-PAC routine. Comparison of this
practically available performance with the routines utilizing clair-
voyantly determined completion thresholds demonstrates the perfor-
mance gap that can be closed by more powerful (but computationally
intensive) ML optimization routines.

Results of this analysis is illustrated below in Fig. 1 for the DOA
set θm = {−20o,−15o, 35o, 37o}, with T = 15 training samples
and a uniform linear antenna with M = 20 elements, spaced at
λ/2. The mean square error (based on offset of the estimated DOAs
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from the true DOAs) for the two closely spaced sources (35o, 37o)
and the average CRLB associated with the two sources is shown for
source SNRs ranging from -15 dB to +25 dB. Results are shown
for standard MUSIC, the practical GLRT-PAC algorithm, the GLRT-
PAC algorithm based on the “strict” threshold (27) and finally the
predict and cure search algorithm based on the likelihood function
(2) and the completion threshold (25).

The need for the threshold in the latter two algorithms is to en-
sure that failures of the routine itself to find the global maximum are
not considered. The results are therefore a proxy for global MLE
using both the LRu (17) and the LF (2). It should be noted, how-
ever, that in this case, the predict and cure routine success rate is
quite high. For example, for the worst-case result at -3dB SNR, we
were able to get 78% of the solutions to meet condition (25), 94%
of the solutions to meet condition (27), and 100% of the solutions to
meet the practical threshold comparison (28). Even better statistics
are observed at other SNRs and therefore the conclusions that follow
are statistically reliable.

Fig. 1: Mean Square Error for Practical and Strict GLRT-PAC

At the high SNR = 25 dB, all the above mentioned techniques,
including MUSIC, demonstrate high accuracy consistent with the
CRLB (although, as expected, the ML optimization provides im-
provement relative to MUSIC, since the sample support is limited).
At SNR = 21 dB, MUSIC starts to break, and at SNR = 7 dB all trials
contained an outlier with an error that exceeded 2o.

The best performance is delivered by the “predict and cure” rou-
tine based on the LF (labeled LF-PAC (strict)), which is not surpris-
ing given that it is the closest proxy to global MLE of the routines
compared. Here the “ML breakdown” phenomena is not observed
until SNR = 1 dB, which is 20dB beyond the MUSIC breakdown
threshold in this small sample case. This demonstrates the con-
siderable gap that exists between MUSIC-specific and ML-intrinsic
breakdown when operating in this small sample regime.

It is very pleasing to confirm that there is no significant differ-
ence between the “MLE proxy” routines which employ the likeli-
hood function (2) and LF local extremum threshold (25) versus those
which employ the under-sampled likelihood ratio (17) and LRu lo-
cal extremum threshold (27). The observed breakdown threshold
is practically indistinguishable, while the actual accuracy is only
mildly degraded (and still improved relative to MUSIC).

Finally, we are able to demonstrate a significant performance
improvement w.r.t. the conventional MUSIC, delivered by the prac-
tical (statistical) LRu-based GLRT-PAC routine. Indeed, the SNR
breakdown point has been moved from 21 dB down to around 8 dB.

At the same time, we can see that potential ML-intrinsic “thresh-
old” performance is not fully achieved by the GLRT-PAC routine due
to the statistical nature of the completion threshold in (29). Further
reduction of the breakdown point from 8 dB to 1 dB could serve as
a motivation for more use of computationally involved techniques.

4. SUMMARY AND CONCLUSION

In this paper we introduced the new under-sampled likelihood ra-
tio LRu(XT , Rmod) that can be used in GLRT-based detection-
estimation techniques such as GLRT-PAC when T < M . This LRu

is properly normalized and most importantly, for Rmod = R0 is
described by a p.d.f. invariant w.r.t. the scenario R0, being fully
specified by M and T . We demonstrated that optimization of this
LRu is practically equivalent to the accurate LF optimization. At the
same time, the above mentioned p.d.f. invariance enables the statis-
tical assessment of the “quality” of any solution derived by MUSIC,
and furthermore, supports significant DOA estimation accuracy im-
provement. The potential threshold capabilities of accurate ML esti-
mation is also demonstrated and shown to be still above practically
available performance.
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