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ABSTRACT

We study a multiple hypothesis test for detecting signals embedded
in noisy observations of a sensor array. The global level of the mul-
tiple test is controlled by the false discovery rate (FDR) criterion
recently suggested by Benjamini and Hochberg. In previous stud-
ies, the suggested procedure has shown promising results on both
simulated and real data. Here we carefully examine the consistency
property of the multiple test procedure. Applying the asymptotic
properties of maximum likelihood (ML) estimation, we prove strong
consistency under a mild condition on signal and noise eigenvalues.
This condition enables us to nd the minimum SNR to ensure con-
sistency. Our analysis is further con rmed by numerical experiments
conducted under low SNRs and closely located signal sources.
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1. INTRODUCTION

Determination of the number of signals embedded in noisy sensor
outputs is a key issue in array processing and related applications
[2]. Many high resolution methods, such as the maximum likelihood
(ML) approach or MUSIC, assume a known number of signals. Per-
formance of these techniques depends strongly on this knowledge
[4]. In radar or geophysics, deciding how many incoming waves is
as important as estimating the associated propagation parameters.

In [5] [6], we suggested a detection procedure based on multiple
testing under false discovery rate (FDR) consideration. Compared to
conventional methods based on information theoretic criteria, such
as Akaike’s information criterion (AIC) [11] or Rissanen’s minimum
description length (MDL) [12] [13], the multiple test procedure of-
fers a higher probability of correct detection and a lower SNR thresh-
old in the nite sample case. Furthermore, the proposed test can be
applied to both narrow band and broadband signals.

In this work, we investigate the consistency property of the mul-
tiple test procedure. Applying asymptotic results of ML estimation
under misspeci ed models, we prove that the multiple test procedure
is a strongly consistent estimator for the number of signals under a
mild condition on signal and noise eigenvalues. More precisely, the
ratio between the smallest signal eigenvalue and the noise eigenvalue
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needs to exceed a threshold to ensure consistency. We derive an ex-
plicit expression for the threshold depending only on the number of
signals and the number of sensors. With this condition, we can eas-
ily predict the region where consistency is guaranteed.

In the following section, we give a brief description of the signal
model. Section 3 introduces the multiple test procedure and the FDR
criterion. In section 4, we shall prove the consistency property of
the multiple test procedure. Simulation results are presented and
discussed in section 5. Our concluding remarks are given in section
6.

2. SIGNAL MODEL

Consider an array of n sensors receiving m narrow band signals
emitted by far- eld sources located at θ = [ θ1,. . ., θm]T . The ar-
ray output x(t) ∈C

n×1 can be expressed as

x(t) = Hm(θm)sm(t) + n(t), t = 1, . . . , T (1)

where the ith column of the matrix

Hm(θm) = [d(θ1) · · ·d(θi) · · ·d(θm)] (2)

d(θi) ∈C
n×1 is the steering vector associated with the signal arriv-

ing from the direction θi. The unknown signal waveform sm(t) =
[s1(t),. . ., sm(t)]T ∈ C

m×1 is considered as a realization of a sta-
tionary random process. Furthermore, the noise vector n(t) ∈C

n×1

is independent, identically complex normally distributed with zero
mean and covariance matrix νI , where ν is an unknown noise spec-
tral parameter and I is an identity matrix of corresponding dimen-
sion. Given the set of observations {x(t)}T

t=1, the problem of central
interest is to determine the number of signals m.

3. SIGNAL DETECTION USING A MULTIPLE
HYPOTHESIS TEST

We formulate the problem of detecting the number of signals as a
multiple hypothesis test. Let M denote the maximal number of sig-
nals. The following procedure detects one signal after another. More
precisely, for m = 1,

H1 : Data contains only noise.

x(t) = n(t)

A1 : Data contains at least 1 signals.

x(t) = H1(θ1)s1(t) + n(t) (3)
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For m = 2, . . . , M

Hm : Data contains at most (m − 1) signals.

x(t) = Hm−1(θm−1)sm−1(t) + n(t)

Am : Data contains at least m signals.

x(t) = Hm(θm)sm(t) + n(t) (4)

We use the subscripts (m − 1) and m to emphasize the dimension
of the steering matrix and the signal vector under the null hypothesis
Hm and the alternative Am, respectively. Let {i1, i2, . . . , ir} be an
arbitrary subset of {1, 2, . . . , M} and suppose that among M hy-
potheses, r are rejected, namely Hi1 , Hi2 , . . . , Hir . Then the num-
ber of signals is determined by the maximal index of Hi1 , Hi2 , . . . , Hir .
Namely,

m̂ := max{i1, i2, . . . , ir}. (5)

Which hypotheses are to be rejected depends on the adopted error
criterion. In this work, we shall apply the Benjamini-Hochberg pro-
cedure to control the false discovery rate.

Based on the likelihood ratio (LR) principle, we obtain the test
statistics Tm(θ̂m), (m = 1, . . . , M) as follows.

Tm(θ̂m) = log

(
tr[(I − P m−1(θ̂m−1))R̂]

tr[(I − P m(θ̂m))R̂]

)
(6)

= log

(
1 +

n1

n2
Fm(θ̂m)

)
, (7)

where R̂ = 1
T

∑T
t=1 x(t)x(t)H and P (θ̂m) is the projection ma-

trix onto the subspace spanned by the columns of Hm(θ̂m). When
m = 1, we de ne P 0(·) = 0. θ̂m represents the ML estimate as-
suming that m signals are present in the observation.

Under hypothesis Hm, the statistic

Fm(θ̂m) =
n2

n1

tr[(P m(θ̂m) − P m−1(θ̂m−1))R̂]

tr[(I − P m(θ̂m))R̂]
(8)

is Fn1,n2–distributed where the degrees of freedom n1, n2 are given
by [8] [9]

n1 = T (2 + rm), n2 = T (2rx − 2m − rm) (9)

with rx = dim(x(t)) = n being the dimension of x(t) and rm =
dim(θm) denoting the dimension of the parameter vector associated
with the mth signal. Since we only consider the direction of ar-
rival (DOA) parameter, rm = 1. More details about the Fn1,n2 -
distribution can be found in [7].

From eq. (7) it is easy to see that in the narrow band case, the
LR test is equivalent to the F -test proposed by Shumway [10]. The
F -test uses Fm(θ̂m) in testing Hm against Am. Given (m − 1)
signals, whether a further signal exists is decided by whether the es-
timated increase in SNR is large enough.

Control of the False Discovery Rate

The control of type one error is an important issue in multiple in-
ferences. A type one error occurs when the null hypothesis Hm

is wrongly rejected. The traditional concern in multiple hypothe-
sis problems has been about controlling the familywise error-rate
(FWE). Given a certain signi cance level α, the control of FWE re-
quires each of the M tests to be conducted at a lower level. When
the number of tests increases, the power of the the FWE-controlling
procedures is substantially reduced. The false discovery rate (FDR),
suggested by Benjamini and Hochberg [1], is a completely different
point of view for considering the errors in multiple testing. The FDR
is de ned as the expected proportion of errors among the rejected
hypotheses. If all null hypotheses {H1, H2, . . . , HM} are true, the
FDR-controlling procedure controls the traditional FWE. But when
many hypotheses are rejected, an erroneous rejection is not as cru-
cial for drawing conclusion from the whole family of tests, the FDR
is a desirable error rate to control.

Assume that among the M tested hypotheses {H1, H2, . . . , HM},
M0 are true null hypotheses. Let {p1, p2, . . . , pM} be the p-values
(observed signi cance values) corresponding to the test statistics
{T1, T2,. . . , TM}. By de nition, pm = 1−PHm(Tm) where PHm

is the distribution function under Hm. Benjamini and Hochberg
showed that when the test statistics corresponding to the true null hy-
potheses are independent, the following procedure controls the FDR
at level q · M0/M ≤ q[1].

The Benjamini Hochberg Procedure

De ne

k = max
{

m : p(m) ≤ m

M
q
}

(10)

and reject H(1) . . . H(k). If no such k exists, reject no hypothesis.

4. CONSISTENCY

In this section, we show that the multiple test procedure described
previously yields a strongly consistent estimator under a mild con-
dition. Let R = H0(θ0)CsH0(θ0)

H + νI denote the ensemble
average of the sample covariance matrix R̂ where H0 and Cs =
Esm0(t)sm0(t)

H represent the steering matrix and signal covari-
ance matrix associated with the true number of signals m0. It is well
known that the eigenvalues of R are characterized by λ1 ≥ . . . ≥
λm0 > λm0+1 = . . . = λn = ν. The largest m0 eigenvalues and
the remaining eigenvalues are referred to as the signal eigenvalues
and noise eigenvalues, respectively.

Theorem (Consistency) Assuming that

λm0

ν
> c0, c0 =

1.5

1 − 1
2(n−m0)

. (11)

Then the multiple test procedure (3), (4) yields a strongly consistent
estimator for the number of signals, i.e. m̂ → m0 with probability
one as T → ∞.

Proof As we determine the number of signals by (5), it suf ces to
show that hypotheses Hm’s are retained for m > m0 and Hm0 is
rejected as T goes to in nity.

Assuming the signal model in section 2, the sample covariance
matrix R̂ approaches the ensemble average R with probability one.
From the asymptotic properties of ML estimation under misspeci ed
models, we know that the ML estimate θ̂m converges almost surely
to the minimizing point of the following criterion [4]
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θ∗
m = arg min

θm

tr[(I − P m(θm))R], (12)

where m is the assumed number of signals. Furthermore,

tr[(I − P m(θ∗
m))R] = λm+1 + . . . + λn, (13)

tr[(I − P m−1(θ
∗
m−1))R] =λm + λm+1 + . . . + λn. (14)

Consequently, as T → ∞, the statistic Tm(θ̂m) in (6) approaches

T ∗
m = log(1 +

λm

λm+1 + . . . + λn
) (15)

and the statistic Fm(θ̂m) in (8) approaches

F ∗
m =

λm/n1

(λm+1 + . . . + λn)/n2
=

λm
(1+1/2)

λm+1+...+λn

(n−m−1/2)

(16)

with probability one. The degrees of freedom n1 and n2 are given
by (9) with rm = 1.

For m > m0, we have λm = λm+1 = . . . = λn = ν. Therefore,

F ∗
m =

1 − 1
2(n−m)

1 + 1
2

< 1. (17)

For m = m0,

F ∗
m0 =

λm0
(1+1/2)

ν(n−m0)
(n−m0−1/2)

=
λm0

ν
·
1 − 1

2(n−m0)

1.5
. (18)

Recall that at each test stage, the p-value is obtained under the as-
sumption that Fm(θ̂m) is Fn1,n2 -distributed where n1 and n2 grows
with increasing T . Applying the central limit theorem, the asymp-
totic Fn1,n2 -distribution can be approximated by a normal distribu-
tion with mean 1 and variance 2/n1, denoted by N (1, 2/n1) [3].

For m > m0, from (17) we know that F ∗
m < 1. The asymptotic

distribution N (1, 2/n1) leads to an observed signi cance level pm

larger than 0.5. Given a reasonably chosen FDR level, for example
q = 0.1, pm is compared with q′ ≤ q. As a result,

pm > 0.5 > q ≥ q′. (19)

The hypotheses Hms for m > m0 are all retained as T → ∞.

For m = m0, to guarantee Hm0 to be rejected, the p-value must
satisfy

pm0 = 1 − Φ(
F ∗

m0 − 1√
2/n1

) ≤ q/M, (20)

where Φ(·) is the distribution function of standard normal distribu-
tion N (0, 1). Thus,

F ∗
m0 ≥ 1 +

√
2

n1
Φ−1(1 − q

M
) = 1 + O(n

−1/2
1 ). (21)

This can be achieved if

F ∗
m0 =

λm0

ν
·
1 − 1

2(n−m0)

1.5
> 1. (22)

Thus, assuming the condition (11), Hm0 is rejected with probability
one as T → ∞. �

The above proof shows that the consistency property is governed
by the condition (11). Eq. (11) implies that the ratio between the
smallest signal eigenvalue and the noise eigenvalue must be at least
as large as c0 = 1.5/(1 − 1

2(n−m0)
). The threshold c0 is deter-

mined by the number of sensors n and the true number of signals
m0. The ratio λm0/ν is closely related to SNR associated with the
weakest source signal. To ensure consistency, SNR needs to exceed
a threshold.

5. SIMULATION

In this section, we examine the impact of the ratio λm0/ν on the
consistency property of the multiple test procedure. In particular, we
shall investigate whether eq. (11) is a suf cient condition for con-
sistency.

In the rst experiment, a uniform linear array of n = 15 sensors
with inter-element spacings of half a wavelength λ/2 is employed.
The narrow band signals are generated by m0 = 3 uncorrelated sig-
nals located at [−30◦ 20◦ 24◦] of various strengths. The difference
of signal strengths is [−1 1 0] dB where 0 dB corresponds to the ref-
erence signal. The SNR, de ned as 10 log

(|si(t)|2/ν
)

for the ith
signal, varies from −12 to −6 dB in a 1 dB step. To simulate large
sample scenarios, we use T = 5000 snapshots for each of the 100
trials performed. The FDR is controlled at level q = 0.1.

Fig. 1 presents the probability of correct detection vs. SNR
in the upper part and the empirical mean of the ratio λm0/ν in the
lower part. By correct detection, we mean m̂ = m0. The dashed
line corresponds to the c0 level. Given m0 = 3, n = 15, by (11),
the lower bound on the ratio λm0/ν is c0 = 1.565. For SNR less
than −10 dB, the probability of correct detection is zero. In the same
SNR region, one can observe that the estimated λm0/ν is less than
the required minimum value c0. At SNR = −10 dB, the probability
of correct detection is approximately 0.5. Interestingly, the average
value of λm0/ν is 1.58 which is very close to c0 = 1.565. For
SNR ≥ −9 dB, the ratio λm0/ν > c0 and the probability of correct
detection reaches 100%. The con rms the importance of the condi-
tion (11) to consistency.

The second experiment uses a similar scenario as that in the pre-
vious experiment. The number of sensors of the array is reduced
to n = 7. By (11), a smaller n leads to a larger c0 = 1.714. In
addition, the ratio λm0/ν becomes lower. Consequently, one needs
higher SNRs to ensure consistency. As presented in g. 2, the prob-
ability of correct detection achieves 100% for SNR ≥ 2 dB where
the condition (11) is satis ed. At SNR = 1 dB, λm0/ν is very close
to c0 and the probability of correct detection is about 50%. For SNR
≤ 0 dB, λm0/ν < c0 and the probability of correct detection is zero.

In summary, the asymptotic behavior of the multiple hypothesis
test for determining the number of signals is governed by the ratio
between the smallest signal eigenvalue and noise eigenvalue. Nu-
merical results show that the lower bound on this ratio provides an
accurate estimate for the minimum SNR to ensure consistency.
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Fig. 1. Upper panel: empirical probability of correct detection. Lower panel:
estimated ratio between λm0 and ν. m0 = 3, n = 15. SNR = [−12 : 1 :
−6] dB.

6. CONCLUSION

This work discusses the consistency property of a multiple hypothe-
sis test for estimating the number of signals. To increase the power
of the test, the global signi cance level is controlled by the FDR cri-
terion. Applying asymptotic properties of ML estimation, we proved
that this procedure is a strongly consistent estimator when the ratio
between the smallest signal eigenvalue and the noise eigenvalue ex-
ceeds a certain threshold. We derived an explicit expression for the
threshold that depends only on the number of signals and the number
of sensors. With this expression, one can easily nd the minimum
SNR to ensure consistency. Our analysis is further validated by nu-
merical experiments carried out with closely located signal sources
and low SNRs.
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