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ABSTRACT
We propose a near- eld source localization algorithm with one-
dimensional (1-D) search via symmetric subarrays. By dividing the
uniform linear array (ULA) into two symmetric subarrays, the steer-
ing vectors of the subarrays yield the 1-D (only bearing-related)
property of rotational invariance in signal subspace, which allows for
the bearing estimation using the generalized far- eld ESPRIT. With
the estimated bearing, the range estimation of each source is conse-
quently obtained by de ning 1-D MUSIC spectrum. This algorithm
transforms two-dimensional (2-D) search involved in the parameter
estimation to 1-D search, and it does not require high-order statistics
computation in contrast with the traditional near- eld high-order ES-
PRIT algorithm.

Index Terms— Array signal processing, Direction of arrival
estimation, Distance measurement, Position measurement

1. INTRODUCTION

Source localization nds its important applications in radar,
sonar, seismology and oceanography. Various algorithms have
been proposed for bearing estimation of multiple far-
eld sources, where the propagating waves are considered
to be plane waves at the sensor array. However, when the
sources are located in the near eld of the array, the wave-
fronts emitted from these sources are spherical rather than
planar at each sensor position, and thus far- eld bearing esti-
mation algorithms are not applicable. In such situation, more
sophisticated algorithms have to be exploited for estimating
the azimuth as well as range to localize the sources.
A good approximation of the nonlinear wavefront shape

is the Fresnel approximation if the sources are located in the
Fresnel region. Some algorithms are recently proposed by ap-
plying the Fresnel approximation in the near- eld source lo-
calization with uniform linear array (ULA). Two-dimensional
(2-D) and three-dimensional (3-D) MUSIC have been devel-
oped in [1, 2]. A high-order ESPRIT algorithm was studied
in [3, 4], where the fourth-order cumulants are computed to
formulate the ESPRIT-like model. In contrast to the subspace-
based approaches, [5]−[7] presented the maximum likelihood
estimation of the near- eld parameters, and [8] exploited the
cyclic-statistic-based method for the cyclostationary signals.
Considering the computational complexity due to multi-

dimensional search or high-order statistics computation in-
volved in most of the above algorithms, more recently, Grosicki
presented a method of low computational cost in [9]. It ap-

plies the second-order statistics of the array output to trans-
form the near- eld parameters into an equivalent number of
electrical angles, which are estimated as far- eld parameters
by a weighted linear prediction algorithm.
In this paper, we propose a second-order-statistics based

1-D algorithm with symmetric-subarray partition to localize
multiple near- eld sources. It does not require high-order sta-
tistics computation or parameter pairing or multi-dimensional
search. By dividing a ULA into two symmetric subarrays, the
steering vectors of the corresponding subarrays yield the far-
eld-like rotational invariance property in signal subspace.
Based on this property, the algorithm is implemented with
the following two steps: 1) Applying the generalized far- eld
ESPRIT to the symmetric subrrays to estimate the bearing
of multiple sources; 2) With the estimated bearing of each
source, applying 1-DMUSIC to get its range estimation. Since
the noise subspace has been computed in the ESPRIT-based
bearing estimation in 1), no additional eigen-decomposition
is required in the MUSIC-based range estimation in 2). The
symmetric-subarray partition transforms 2-D search for the
near- eld parameter estimation to (K + 1) times 1-D search,
withK being the number of sources.

2. NEAR-FIELD SIGNAL MODEL FOR
SYMMETRIC SUBARRAYS

2.1. Near-Field Signal Model

We consider a near- eld scenario of K uncorrelated narrow-
band signals impinging to a (2M + 1)-element ULA with
interelement spacing d, which is illustrated in Fig. 1. Let the
array center be the phase reference point. The received signal
at themth sensor can be modeled as

xm(t) =
K∑

k=1

ejτmksk(t) + nm(t), m = −M, . . . , M, (1)

where sk(t) is the kth source signal, nm(t) is the additive
noise, and τmk is the phase shift associated with the propa-
gation time delay between sensor 0 and sensor m of the kth
source signal, which is a function of source signal parameters,
range rk, angle θk and wavelength λ, given by

τmk =
2π

λ

(√
r2
k + (md)2 − 2rkmd sin θk − rk

)
. (2)
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When the source k is in the Fresnel region, which is de-
ned by rk locating in the range, 0.62

(
D3/λ

)1/2
< rk <

2D2/λ, with D representing the aperture of the array [10],
τmk can be approximated by using the second-order Taylor
expansion [9],

τmk =
(
−2πd

λ
sin θk

)
m +

(
πd2

λrk
cos2 θk

)
m2 + O

(
d2

r2
k

)
,

(3)
where O

(
d2/r2

k

)
denotes terms of order greater than or equal

to d2/r2
k. The second-order Taylor series approximation is

found in many references on near- eld source localization
with ULA [3]−[5], [7], [8]. Using this approximation, the
signal in (1) can be reduced to

xm(t)=
K∑

k=1

e
j(− 2πd

λ sinθk)m+j
�

πd2
λrk

cos2θk

�
m2

sk(t) + nm(t).

(4)
The received signal vectorX(t)=[x−M (t), . . . , xM (t)]T ,

with the superscript T denoting matrix transposition, can be
written in

X(t) = AS(t) + N(t), (5)

where S(t)= [s1(t), . . . , sK(t)]T is the signal vector, N(t)=
[n−M , . . . , nM ]T is the noise vector and A is the array mani-
fold matrix given by,

A = [a(r1, θ1), . . . , a(rK , θK)] , (6)

with the steering vector a(rk, θk) being expressed as

a(rk, θk) =

⎡
⎢⎣

ak,−M

...
ak,M

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

e
j( 2πd

λ sin θk)M+j
�

πd2
λrk

cos2 θk

�
M2

...

e
−j( 2πd

λ sin θk)M+j
�

πd2
λrk

cos2 θk

�
M2

⎤
⎥⎥⎥⎦ . (7)

2.2. Signal Model for Symmetric Subarrays

Observing that the elements in (7) are symmetric with respect
to the second term, we divide the ULA into two subarrays as
shown in Fig. 1. The rst subarray is formed with the rst L
sensors in ascending order (from sensor−M to sensor−M +
L − 1), and the second subarray is formed with the last L
sensors in descending order (from sensor M to sensor M −
L + 1). The received signal vectors of the two subarrays can
be written as

X1(t) = [x−M (t), x−M+1(t), . . . , x−M+(L−1)(t)]T , (8)

Fig. 1. Near eld ULA con guration with symmetric partition.

and

X2(t) = [xM (t), xM−1(t), . . . , xM−(L−1)(t)]T , (9)

where K < L < 2M + 1. These two subarray vectors have
similar form,

X1(t) = A1S(t) + N1(t), (10)

and
X2(t) = A2S(t) + N2(t), (11)

where N1(t) = [n−M , n−M+1(t) . . . , n−M+(L−1)]T and
N2(t) = [nM , nM−1(t) . . . , nM−(L−1)]T are subarray noise
vectors. The matrix A1 is the rst L rows of A and A2 is
constructed with the last L rows of A in reverse order.
The relationship between A and A1, A2 is

A=
[

A1

last (M − L) rows

]
=

[
rst (M − L) rows

JA2

]
, (12)

where J is the anti-identity matrix satisfying J2 = I.
De ne A1 as

A1 = [a1(r1, θ1), . . . , a1(rK , θK)] , (13)

with

a1(rk, θk) =

⎡
⎢⎣

ak,−M

...
ak,−M+L−1

⎤
⎥⎦ . (14)

The symmetric property gives

A2 = [D(θ1)a1(r1, θ1), . . . ,D(θK)a1(rK , θK)], (15)

where

D(θk)=diag
[
e−j(4πd

λ sinθk)M,. . .,e−j(4πd
λ sinθk)(M−L+1)

]
,

(16)
which is only related with the angle θk.
It is noteworthy that to avoid the ambiguity of the phase

for the element of D(θk), it is necessary to require d < λ/4.
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3. NEAR-FIELD SOURCE LOCALIZATIONWITH
SYMMETRIC SUBARRAYS

3.1. Eigen-decomposition of the Array Output

The eigen-decomposition of the array covariance matrix R =
E[X(t)XH(t)] yields

R = UsΛsUH
s + UnΛnUH

n , (17)

where the superscriptH denotes the complex conjugate trans-
position, Us ∈ C(2M+1)×K contains K eigen vectors span-
ning the signal subspace of R, and the diagonal matrix Λs ∈
CK×K contains the corresponding eigen values. Similarly,
Un∈C(2M+1)×(2M+1−K) contains 2M + 1 − K eigen vec-
tors in the noise subspace of R, whereas the diagonal matrix
Λn∈C(2M+1−K)×(2M+1−K) is built from the corresponding
eigen values.

3.2. Generalized ESPRIT for Bearing Estimation

The signal model in (5) implies that there exists a K × K
full-rank matrix G satisfying Us = AG,

AG=
[

A1G
last (M − L) rows

]
=

[
rst (M − L) rows

JA2G

]
, (18)

(18) means Us can be similarly partitioned as

Us =
[

Us1

last (M − L) rows

]
=

[
rst (M − L) rows

Us2

]
. (19)

Thus Us1 and Us2, corresponding to the rst and second sub-
array, are

Us1 = A1G, (20)

and
Us2 = JA2G, (21)

or equivalently
JUs2 = A2G. (22)

According to the generalized ESPRIT in [11], we intro-
duce a diagonal matrix

Ψ(θ)=diag[e−j(4πd
λ sinθ)M , . . . , e−j(4πd

λ sinθ)(M−L+1)], (23)

and form the matrix JUs2 − Ψ(θ)Us1,

JUs2 − Ψ(θ)Us1 =
[(D(θ1)−Ψ(θ))a1(r1,θ1),. . ., (D(θK)−Ψ(θ))a1(rK ,θK)]G.

(24)

The kth column of the matrix JUs2 −Ψ(θ)Us1 becomes zero
when θ = θk, which implies that the matrix WHJUs2 −
WHΨ(θ)Us1 is singular with W being an arbitrary M × K
full-rank matrix.

The following spectrum function is then used to nd the
angle,

PESPRIT (θ) =
1

det [WHJUs2 −WHΨ(θ)Us1]
. (25)

Peaks of the spectrum function PESPRIT (θ) indicate the esti-
mated angle θ̂k, k = 1, . . . , K.
Note that 1-D search can be implemented for bearing es-

timation of the multiple sources.

3.3. MUSIC for Range Estimation

By substituting the estimated angle θ̂k back into the steering
vectors a(r, θk) in (7), the problem is reduced to nding the
parameter r in a(r, θ̂k) with the received signal X(t). Since
the noise subspace has been obtained in eigen-decomposition
in (17), the range spectrum function of the kth source can be
directly constructed by MUSIC method,

P
(k)
MUSIC(r) =

1

aH(r, θ̂k)UnUH
n a(r, θ̂k)

, k = 1, . . . , K.

(26)
The range estimation is obtained by maximizing P

(k)
MUSIC(r)

in the Fresnel region, rF ,

r̂k = arg max
r∈rF

[
P

(k)
MUSIC(r)

]
. (27)

To avoid the parameter pairing, we form the MUSIC spec-
trum at each estimated bearing. For K sources, K times 1-D
search are required to implement the range estimation. Thus,
a total of (K + 1) times 1-D search is required in this 2-D
near- eld localization algorithm.

4. SIMULATION RESULTS

In the simulations, a ULA with M = 4 and d = λ/5 is em-
ployed to localize two uncorrelated narrowband sources in ad-
ditive white Gaussian noise. The locations of the two sources
are set as (r1, θ1) = (1.8λ,−8o) and (r2, θ2) = (3λ, 12o),
which are in the Fresnel region of the array (1.25λ < r <
5.12λ), according to the de nition in 2.1.
We divide the array into two subarrays, and each subar-

ray consists of L = 8 elements. To test the performance of
the algorithm, 500 Monte Carlo simulations are performed at
different SNRs (from 0 dB to 30 dB) and with different snap-
shots (from 200 to 6000). The results are compared with the
Cramer-Rao Bound (CRB) in [9].
Figs. 2 and 3 illustrate the standard deviation of the esti-

mated bearing and range versus SNR, respectively. The solid
lines in these gures indicate the estimated parameters, whereas
the dash-dot lines indicate the corresponding CRBs. 1024
snapshots are used in this simulation.
Similarly, Figs. 4 and 5 display the bearing and range

estimation versus snapshots, respectively. In this simulation,
SNR = 10 dB.
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For two sources localization, this algorithm only needs 3
times 1-D search, and it does not require parameter pairing or
high-order statistics computation.
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Fig. 2. Standard deviation and CRB versus SNR of the bearing esti-
mation.
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Fig. 3. Standard deviation and CRB versus SNR of the range esti-
mation.
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Fig. 4. Standard deviation and CRB versus snapshots of the bearing
estimation.

5. CONCLUSION

Based on the second-order-statistics, this paper proposes a 1-
D algorithm via symmetric subarrays for 2-D near- eld mul-
tiple sources localization. By exploiting the far- eld-like ro-
tational invariance property in signal subspace of the sym-
metric subarrays, 2-D parameter estimation is transformed to
1-D estimation. 1-D generalized ESPRIT is applied to esti-
mate the bearings, and 1-D MUSIC is applied to estimate the
range of each source with its estimated bearing. By imple-
menting (K +1) times 1-D search, the algorithm can localize
K sources in the near eld without parameter pairing. Unlike
the traditional near- eld high-order ESPRIT, this algorithm
does not require high-order statistics computation.
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Fig. 5. Standard deviation and CRB versus snapshots of the range
estimation.
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