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ABSTRACT

We develop an adaptive waveform design method for target track-
ing. In our method, at each time step, we optimally select the param-
eters, including the polarization, of the transmitted signal waveform
to improve the tracking accuracy. An array of electromagnetic vec-
tor sensors is employed to fully recover the polarimetric information
from the reflected signals. We derive our approach under a frame-
work of sequential Bayesian filtering. We apply a sequential Monte
Carlo method to manipulate the nonlinear and non-Gaussian state
and measurement models. We design a criterion for the waveform
optimization based on a posterior Cramér-Rao bound.

Index Terms— Adaptive waveform design, target tracking, se-
quential Bayesian filtering, electromagnetic vector sensors, sequen-
tial Monte Carlo methods

1. INTRODUCTION

In this paper we address the problem of developing adaptive wave-
form design methods for target tracking using electromagnetic vec-
tor sensors. The proposed methods are derived under a framework
of sequential (or recursive) Bayesian filtering.

In an ordinary active sensing system, parameters of the transmit-
ted waveform are fixed during the sensing phase. However, target
states, including target position, velocity, and scattering coefficients,
will change dynamically during the sensing process. Furthermore, in
some scenarios environments may also change dynamically, for ex-
ample, there exist time-varying clutter or other interferences. Hence,
the fixed waveformmight not match the operational scenarios, which
degrades the sensing performance. Therefore, the purpose of our
work is to adaptively design the transmitted waveform in response
to the target’s dynamic states and the time-varying environmental
conditions. Hence, we can achieve a better tracking performance
compared with the conventional target tracking systems where the
transmitted waveforms are fixed.

Another advantage of our waveform design method is that we
employ the freedom provided by the polarization of the transmit-
ted signal to design our tracking system, whereas in usual waveform
design methods only the shape of the transmitted waveform is con-
trolled. As we know, optimally selecting the polarization state of the
transmitted waveform can mitigate the multipath interference and
improve the performance of the sensing system in detection, tracking
and target identification. Therefore, by exploiting the polarimetric
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aspects of the reflected signals we can further improve the parameter
estimation accuracy and the resolution of the targets.
Some other work on adaptive waveform design for target track-

ing is presented in [1]-[4]. In [1] and [2], the state and measurement
models are assumed to be linear and Gaussian; hence, a Kalman fil-
ter is used for target tracking and the criterions of minimum mean
square tracking error and minimum validation gate volume are used
for optimal waveform design. In [3]-[4], the methods are applied
to a nonlinear, Gaussian measurement model and a linear, Gaussian
state model, and the authors select the optimal waveform parame-
ters by minimizing a mean square tracking error. In our proposed
approach, we track a target using a sequential Monte Carlo method
that is suitable for nonlinear and non-Gaussian situations. We also
design a new criterion based on the posterior Cramér-Rao bound to
optimally select the waveform parameters.

2. DYNAMIC STATE AND MEASUREMENTMODELS

In this section we first create a dynamic state model that can be used
to track not only the target position and velocity, but also the target
scattering coefficients which are important parameters to identify a
target. We then derive a measurement model in which we transmit a
polarized waveform and receive the reflected signal using an electro-
magnetic (EM) vector array. An EM vector sensor can fully exploit
the polarization information from the received signal by measuring
the six components of the EM field. It has been shown that employ-
ing vector sensors improves the estimation of the signal direction of
arrival (DOA) and the resolution of closely spaced signal arrivals [5].

2.1. Target Dynamic State Model

We denote by St the complex scattering matrix representing the po-
larization change of the transmitted signal upon its refection on the
target:

St =

»
shh shv
svh svv

–
. (1)

The variables shh and svv are co-polar scattering coefficients, whereas
shv and svh are cross-polar coefficients. For the mono-static radar
case, shv = svh. Then, we represent the target state at time step k as

xk =
ˆ
ρTk sTk

˜T
(2)

where ρ = [x y z ẋ ẏ ż]T represents the target position and ve-
locity in a Cartesian coordinate system, and s = [Re{shh shv svv}
Im{shh shv svv}]T is the target scattering coefficient vector.
We assume i) the target velocity and scattering coefficients are

nearly constant, and ii) the target position and velocity are statisti-
cally independent to the scattering coefficients. Then, we obtain a
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linear target dynamic state model given by

xk = Fxk−1 + vk−1 =

»
Fρ 0
0 Fs

–
xk−1 + vk−1 (3)

where Fρ is the transition matrix for state vector ρ as

Fρ =

»
I3 TPRII3
0 I3

–
(4)

where In denotes the identity matrix of size n, and TPRI is the pulse
repetition intervel (PRI); Fs = I6 is the transition matrix for s; vk
is the independent process noise, assumed to be zero-mean Gaussian
distributed with covariance matrix

Q =

»
Qρ 0
0 Qs

–
(5)

whereQρ and Qs denote the covariance matrixes for states ρ and s,
respectively. Both Qρ and Qs are assumed to be known.
The assumption that the target scattering coefficients are nearly

constant is suitable for the situation that the target is far away from
the sensor array and the target position change during the tracking
period is not large compared with the distance between the target
and the sensor array. In general, the dynamic model for the scattering
coefficients is a nonlinear function with respect to other states, e.g.,
the target position. This results in a nonlinear state model.

2.2. Measurement Model

We consider a target characterized by azimuth φ, elevation ψ, range
r, Doppler shift ωD, and scattering matrix St. These parameters are
related to the states x. To uniquely identify the polarimetric aspect
of the target, the polarization diversity of the transmitted waveform
is required and the complete EM information of the signal reflected
from the target has to be processed [5]. To provide these measure-
ments, we assume the receiver of the active sensing system is an
array of EM vector sensors where each sensor measures the six com-
ponents of the EM field.
Consider an array of M vector sensors receiving the signal re-

turned from a target at high elevation. The complex envelop of the
measurements can be expressed as

y(t) = A(φ, ψ)Stξ(t− τ )ejωDt + e(t), t = t1, . . . , tN , (6)

where A(φ,ψ) = p(φ,ψ) ⊗ V (φ, ψ) is the array response; [φ ψ]T

is the bearing angle vector; p(φ, ψ) = [exp{j2πkTr1/λ}, . . . ,
exp{j2πkTrM/λ}]T represents the phase of the planewave arriv-
ing from the direction given by k = [cos φ cosψ, sin φ cosψ, sinψ]T

at position rm of the m-th sensor (m = 1, . . . ,M ), λ is the signal
wavelength; and V (φ,ψ) is the response of a single vector sensor
given by [5]

V (φ,ψ) =

2
666664

− sinφ − cosφ sinψ
cosφ − sinφ sinψ
0 cosψ

− cosφ sinψ sinφ
− sinφ sinψ − cosφ
cosψ 0

3
777775 . (7)

The polarized transmitted wave ξ(t) is a narrowband signal which
can be represented by a complex vector [5]

ξ(t) =

»
ξh(t)
ξv(t)

–
= s(t)

»
cosα cosβ + j sinα sin β
− sinα cos β + j cosα sin β

–
(8)

The angles α and β are the orientation and ellipticity of the polar-
ization ellipse depicted by the electric field vector. The function s(t)
represents the scalar complex envelop of the transmitted signal. The
time delay τ = 2r/c, where c is the wave propagation velocity and
r is the distance from the target to the sensor array. The vector e(t)
is the additive noise corrupting the sensor measurements. N denotes
the number of samples during the interval TPRI.
Since ξ(t) is the transmitted signal, the waveform design prob-

lem consists of selecting the envelop s(t) and the polarization angles
α and β in (8). We denote these waveform parameters by θ.
It can be verified that the relation between the target parameters

[φ, ψ, r, ωD] and the states x is given by

φ = arctan(y/x) ψ = arctan(z/
p
x2 + y2)

r =
p
x2 + y2 + z2 ωD = 2ωc

p
ẋ2 + ẏ2 + ż2/c

where ωc is the carrier frequency. Therefore, we obtain a nonlinear
relation between the measurements and the states at time step k as

yk(t) = h̃(t,xk; θk) + ek(t), t = t1, . . . , tN (9)

where h̃(t,x) = A(φ,ψ)Stξ(t− τ )ejωDt. When we lump {yk(t),
t = t1, . . . , tN} together into a vector, we obtain the measurement
model as

yk =

2
64
yk(t1)
...

yk(tN)

3
75 =

2
64
h̃(t1,xk; θk)

...

h̃(tN ,xk; θk)

3
75+

2
64
ek(t1)
...

ek(tN)

3
75

= h(xk; θk) + ek. (10)

3. TARGET TRACKING USING PARTICLE FILTERS

We develop a target tracking approach using sequential Monte Carlo
methods (particle filters). The proposed method can be applied to
nonlinear and non-Gaussian state and measurement models. In our
tracking problem, the potential dimension of the state can be large,
which results in difficult direct important sampling. Hence, we adopt
a Gibbs sampler to draw samples from an importance density func-
tion. This provides more efficient sampling.
The sequential Monte Carlo method is a technique for imple-

menting a recursive Bayesian filter by Monte Carlo simulation. The
key idea is to represent a posterior density function (belief) by a
set of random samples with associated weights and to compute es-

timates based on these samples and weights. Let {x(i)
k , w

(i)
k , i =

1, . . . , Ns} denote a random measure that characterizes the posterior
density function p(xk | y1:k)where {x(i)

k } is a set of support points
with associated weights {w(i)

k } for i = 1, . . . , Ns. The weights are

normalized such that
P

i w
(i)
k = 1.

For a sequential filtering case, we can choose an importance den-
sity q(·) such that we obtain a weight update equation as

w
(i)
k ∝ w

(i)
k−1

p(yk | x(i)
k )p(x

(i)
k | x(i)

k−1)

q(x
(i)
k | x(i)

k−1,yk)
, (11)

and the belief p(xk | y1:k) can be approximated as

p(xk | y1:k) ≈
NsX
i=1

w
(i)
k δ(xk − x

(i)
k ) (12)

where x
(i)
k are sampled from q(xk | x(i)

k−1,yk).
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Now considering our target tracking problem, from the dynamic
state model (3) we observe that if we track the target position, veloc-
ity, and scattering coefficients simultaneously, the dimension of the
parameter space is very large. Hence, if we directly draw samples

from the importance density q(xk | x(i)
k−1,yk), it is typically inef-

ficient. Therefore, we apply a Markov chain Monte Carlo (MCMC)
method, a class of iterative simulatation-based methods, to sample
from the importance density.

In our developed particle filter, we propose to choose the im-

portance density to be the transitional prior p(xk | x(i)
k−1), and

we use a MCMC algorithm, Gibbs sampler, to draw samples from

p(xk | x(i)
k−1). According to the state model (3), we partition the

components of the state as xk = [ρTk , s
T
k ]
T. Then, we derive a

Gibbs sampling algorithm to draw samples x
(i)
k ∼ p(xk | x(i)

k−1) at
time step k in a particle filter. Such a Gibbs sampling is described as
follows.

• Initialization, j = 0. Set randomly or deterministically

x
(i,0)
k =

h“
ρ
(i,0)
k

”T “
s
(i,0)
k

”TiT
.

• Iteration j, j = 1, . . . ,M ,M is a large number.

– Sample ρ(i,j)
k ∼ p(ρk | s(i,j−1)

k ,x
(i)
k−1).

– Sample s(i,j)k ∼ p(sk | ρ(i,j)
k ,x

(i)
k−1).

• Installation of ρ(i,M)
k and s

(i,M)
k into x

(i)
k

x
(i)
k =

h“
ρ
(i,M)
k

”T “
s
(i,M)
k

”TiT
.

Then, the obtained x
(i)
k is a sample from p(xk | x(i)

k−1).

Under a special case, as in our proposed dynamic state (3), that
the partitions ρ and s are statistically independent of each other, the
Gibbs sampling is simplified as

• Sample ρ(i)
k ∼ p(ρk | ρ(i)

k−1).

• Sample s(i)k ∼ p(sk | s(i)k−1).

Then, we install x
(i)
k =

»“
ρ
(i)
k

”T
,
“
s
(i)
k

”T–T
.

4. OPTIMALWAVEFORM DESIGN

In this section we design an optimal waveform design method for
target tracking. It is combined with the above target tracking algo-
rithm and forms an adaptive waveform design approach. In order to
realize this optimization, at time step k, we create a criterion that
represents the estimation performance at time step k + 1 when em-
ploying specific waveform parameters. Then, we select the wave-
form parameters that optimize this performance criterion.

For random parameters, as in our sequential Bayesian filtering
for target tracking, a lower bound analogous to the Cramér-Rao bound
(CRB) in a nonrandom parameter estimation exists and is derived in
[6], usually referred to as posterior CRB (PCRB). That is, the PCRB
provides a lower bound on the mean square error (MSE) matrix for
the estimation of random parameters. This bound is independent of
the specific estimation methods. Hence, we create our waveform
selection criterion based on the PCRB.

4.1. Optimal Waveform Selection Based on PCRB

Consider that in our target tracking problem based on the state model
(3) and measurement model (10), at time step k, we want to estimate
a state trajectory x0:k using the measurements y1:k. We denote
Xk = [xT0 , . . . ,x

T
k ]
T
. Then, the trajectory Bayesian information

matrix (BIM), whose inverse is the PCRB, is defined as

J̄k � Ey1:k, x0:k
h
−�XkXk log p(y1:k, x0:k)

i
(13)

where �η
ψ
denotes the second-order partial derivative with respect

to ψ and η. The lower right nx × nx block (nx = dim(x)) of

J̄k
−1
is the PCRB for estimating xk, and its inverse is the BIM for

estimating xk , denoted as Jk .
To derive the optimal waveform selection criterion, we adopt a

recursive equation in [6] to update BIM Jk+1 as follows

Jk+1 = Ωk −
`
D12
k

´T `
Jk +D11

k

´−1
D12
k + Γk+1, (14)

where

D11
k = Exk, xk+1

h
−�xkxk log p(xk+1 | xk)

i
(15a)

D12
k = Exk, xk+1

h
−�xk+1xk log p(xk+1 | xk)

i
(15b)

Ωk = Exk, xk+1

h
−�xk+1xk+1 log p(xk+1 | xk)

i
(15c)

Γk+1 = Eyk+1, xk+1

h
−�xk+1xk+1 log p(yk+1 | xk+1)

i
. (15d)

For our target tracking problem, the waveform parameters θ only
appear in the measurement model (10). Hence, in the BIM recur-
sive equation (14), only the matrix Γk+1 is related to the waveform
parameters θk+1. Therefore, we design our criterion to select the
optimal waveform parameters θk+1 only using Γk+1.
In our sequential optimal waveform selection, we employ not

only the information provided by the state and measurement mod-
els, but also the measurement history y1:k . Hence, we modify the
matrix Γk+1 to include the measurement history and design the op-
timal waveform based on a new matrix Γ̃k+1 as follows

eΓk+1 = Eyk+1, xk+1|y1:k

h
−�xk+1xk+1 log p(yk+1 | xk+1)

i
(16)

Since eΓk+1 is a matrix, we can use its determinant or trace as a cost
function to create the waveform selection criterion. For example, if

we use the trace of eΓk+1, denoted as Tr{·}, as the cost function,
then we determine the optimal parameters for the next transmitted
waveform as

θ∗k+1 = arg max
θk+1∈Θ

Tr{eΓk+1(θk+1)}. (17)

whereΘ is a set of the allowed values for θk+1. It can also denote a
library of all possible waveforms. The obtained parameter θ∗k+1 will
be used for the transmitted waveform at time step k + 1.

4.2. Computation of the Bayesian Information Matrix eΓk+1

To compute the matrix eΓk+1, in general, the expectation in (16) has
no closed-form analytical solution. We propose to use Monte Carlo
integration to solve the expectation integral. It can be verified that

the matrix eΓk+1 can be calculated as

eΓk+1 = Exk+1|y1:k [Θk+1] (18a)

Θk+1 = Eyk+1|xk+1
h
−�xk+1xk+1 log p(yk+1 | xk+1)

i
. (18b)
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Note that Θk+1 is the standard Fisher information matrix (FIM) for
estimating the state vector xk+1 based on the observations yk+1.

For a sequential Monte Carlo method, we assume at time step k,
we obtain Ns samples and its associated weights from the posterior

p(xk | y1:k) as {x(i)
k , w

(i)
k ; i = 1, . . . , Ns}. Then, the expectation

in (18a) can be computed by the following two steps:

• For i = 1, . . . , Ns, draw samples x
(i)
k+1 ∼ p(xk+1 | x(i)

k ).

• The matrix eΓk+1 is approximated as

eΓk+1 ≈
NsX
i=1

w
(i)
k Θk+1

“
x

(i)
k+1

”
. (19)

In order to calculate (18b), for each x
(i)
k+1, we draw Ny identically

independently distributed (IID) samples {y(j)
k+1; j = 1, . . . , Ny}

from the likelihood function p(yk+1 | x(i)
k+1). Then, we approxi-

mate the FIM Θk+1

“
x

(i)
k+1

”
as

Θk+1

“
x

(i)
k+1

”
≈ 1

Ny

NyX
j=1

Λ
“
y

(j)
k+1,x

(i)
k+1

”
, (20)

where we define the matrix function

Λ(yk+1,xk+1) = −�xk+1xk+1 log p(yk+1 | xk+1). (21)

Therefore, we approximate eΓk+1 using Monte Carlo integration as

eΓk+1 ≈ 1

Ny

NsX
i=1

NyX
j=1

w
(i)
k Λ

“
y

(j)
k+1,x

(i)
k+1

”
. (22)

5. NUMERICAL EXAMPLES

We use an array of two vector sensors to track a moving target in a
2D (x-y) environment. The two vector sensors are located along the
y-axis, separated by 0.5λ (λ = 0.3 m). We only track the position
and velocity of the moving target, hence, the state vector is x =
[x ẋ y ẏ]T. For the envelop of the transmitted signal, we consider a
linear frequency modulated pulse with Gaussian envelop as

s(t) = (πη2)−1/4 exp

»
−
„
1

2η2
− jb

«
t2
–

(23)

where we set η = 1μs and b = 135× 109s−2. The polarization an-
gles belong to the intervals α ∈ [−90◦, 90◦] and β ∈ [−45◦, 45◦].
We adaptively select the polarization angles at each time step. The
initial state of the target is x0 = [4000m 50m/s 8000m −200m/s]
and the scattering coefficients vary dynamically at each time step.
Themeasurement noise is a zero-mean complex-Gaussian distributed
vector, and the signal-to-noise ratio is 1 dB.

We compare the tracking performance of the adaptive waveform
selection and fixed waveform schemes in the numerical examples.
The comparison results of position tracking and velocity tracking are
shown in Fig. 1 and 2, respectively. From these results, we observe
that both schemes track the target position and velocity very well.
However, in the adaptive waveform selection scheme, since we opti-
mally choose the waveform parameters at each time step, its tracking
performance is much better than the fixed waveform scheme.
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Fig. 1. (a) True and estimated target moving trajectory; (b) position
estimation error (solid: true state; star: adaptively selected wave-
form; circle: fixed waveform).
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Fig. 2. True and estimated target velocity (solid: true state; star:
adaptively selected waveform; circle: fixed waveform).

6. CONCLUSIONS

We developed an adaptive waveform design method for target track-
ing using EM vector sensors. We exploited the polarimetric aspect
of the transmitted waveform, hence, we can further improve the
tracking accuracy. We proposed a sequential Monte Carlo method
for target tracking. This method is suitable for nonlinear and non-
Gaussian state and measurement models. We designed a cost func-
tion based on the posterior Cramér-Rao bound and applied a Monte
Carlo method to compute it. Numerical examples demonstrated the
advantages of the adaptive waveform design scheme.
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