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ABSTRACT
In this paper, we propose a low-complexity adaptive two-dimensional
(2-D) frequency estimation algorithm to jointly track 2-D direction-
of-arrivals (DOAs) of multiple moving targets with a uniform rect-
angular array (URA). The LOAFR1 subspace tracking algorithm is
applied to estimate the signal subspace recursively, then an adap-
tive eigenvector-based frequency estimation approach is used to re-
solve the 2-D DOAs from the estimated signal subspace. The eigen-
vectors are obtained from the eigen-decomposition of an adaptively
weighted matrix, whose weighting factors are updated according to
the current DOA estimates and the optimization criterion derived
from the perturbation analysis to minimize estimation error variance.
The complexity order of the proposed algorithm is analyzed in detail
to demonstrate its low computation cost, and the tracking perfor-
mance is validated by simulation results.

Index Terms— Frequency estimation, adaptive signal process-
ing, multidimensional signal processing, localization, tracking

1. INTRODUCTION

The problem of tracking the direction-of-arrivals (DOAs) of multi-
ple moving targets in radar signal processing has attracted much in-
terests in recent years. Various methods based on adaptive filter and
Bayesian statistics were proposed [8]. However, most previous work
assumed that the DOAs were one dimension vectors. A uniform
rectangular array (URA) can be applied to track the DOAs in two
dimensions: elevation and azimuth. The problem to jointly estimate
the two dimensional (2-D) angles is actually a 2-D frequency esti-
mation problem. How to effectively associate the 2-D angles of the
same target is critical. The Unitary ESPRIT algorithm was applied
to jointly estimate 2-D DOAs in [9]. Based on simultaneous Schur
decomposition, the Unitary ESPRIT algorithm was generalized to
multidimensional case in [2]. The problem to jointly track 2-D DOA
was considered in [7], where a subspace tracking algorithm (i.e., Bi-
SVD) was applied to track the subspaces of the structural matrices in
an adaptive MI-ESPRIT algorithm. The MI-ESPRIT algorithm em-
ployed adaptive simultaneous Schur decomposition to estimate the
2-D DOAs.

Recently multidimensional frequency estimation based on eigen-
vectors was proposed in [5]. This approach avoids the expensive
computational cost of simultaneous Schur decomposition and demon-
strates superior performance in simulation experiments. We ana-
lyzed the performance of eigenvector-based frequency estimation al-
gorithms and proposed an optimization strategy for such algorithms
in [4] using adjustable weighting factors.

This material is based on work supported by the U.S. Army Re-
search Laboratory and the U.S. Army Research Office under grant number
W911NF-05-1-0485.

In this paper, we propose a new 2-D DOA tracking algorithm
based on our previous work in frequency estimation. Similar to [7],
we use subspace tracking to estimate the instantaneous signal sub-
space, but we adopt another subspace tracking algorithm – LOAFR1
[6], since the LOAFR1 algorithm demonstrates better performance
over other subspace tracking algorithms and has the same complex-
ity order as the remaining steps of our algorithm. The signal sub-
space shares the same column space as that of a structural matrix,
which is the Khatri-Rao product of several Vandermonde matrices.
The transformation matrix connecting the structural matrix and the
signal subspace is estimated through a so-called “weighted diagonal-
ization” method, which performs eigenvalue decomposition (EVD)
of an adaptively weighted matrix. The weighting factors are updated
adaptively according to current angle estimates and an optimization
criterion similar to that of [4]. The sequential quadratic program-
ming (SQP) process in [4] is avoided here, thus computational com-
plexity is reduced. The computational order of the proposed tracking
algorithm is as low as O(MNF 2), where M and N are the dimen-
sion sizes of the URA array in elevation and azimuth directions, F
is the number of targets. It can be used to estimate the 2-D DOA
of multiple moving targets at every snapshot and track the DOA tra-
jectories in real time. The performance of the proposed algorithm is
evaluated by numerical simulations.

In the following, upper (lower) bold face letters are used for ma-
trices (column vectors). AT , AH , and A† denote the transpose,
Hermitian transpose, and pseudo-inverse of A, respectively. We will
use ⊗ for the Kronecker product, � for the Khatri-Rao product, Ip

for a p×p identity matrix, 0M×N for an M ×N zero matrix, D(a)
for a diagonal matrix with a as its diagonal, and af,n or [A]f,n for
the (f, n)-th element of A.

2. THE PROPOSED 2-D DOA TRACKING ALGORITHM

In this paper, we assume that the number of targets does not change
in the tracking process. Suppose there are F moving targets that are
to be tracked by a URA of size M ×N . Suppose the elevation and
azimuth angles of the f -th target at tth snapshot are θf (t) and φf (t),
which are the angles with respect with x-axis and y-axis; the inter-
sensor spacings in x-axis and y-axis are Δx and Δy , respectively.
Define

ωf (t) =
2π

λ
Δx cos θf (t), νf (t) =

2π

λ
Δy cosφf (t), (1)

where λ is the wavelength. The output signal of the URA at the
(m, n)-th sensor is modeled as [9]

xm,n(t) =
F∑

f=1

cf (t)e
j(m−1)ωf (t)ej(n−1)νf (t), t = 1, . . . , T,
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where m = 1, . . . , M and n = 1, . . . , N . If we choose Δx =
Δy = λ

2
, and assume 0 < θf (t), φf (t) ≤ π, there is one-to-one

mapping between ωf (t) and θf (t), and between νf (t) and φf (t),
where −π ≤ ωf (t) < π and −π ≤ νf (t) < π. For this reason, in
the following we also refer ωf (t) and φf (t) as the 2-D DOA of the
f -th target.

If the f -th target moves, (ωf (t), νf (t)) travels a trajectory in
the Π × Π plane, where Π = [−π, π). The problem of 2-D DOA
tracking is to estimate F trajectories {(ωf (t), νf (t))}F

f=1 from the
observations {xm,n(t)} for t = 1, . . . , T . Define the snapshot vec-
tor as

x(t) = [x1,1(t) x1,2(t) · · · x1,N (t) x2,1(t) · · · xM,N (t)]
T ,

and the amplitude vector c(t) := [c1(t) c2(t) · · · cF (t)]
T , then it

can be verified that

x(t) =
(
A(t)�B(t)

)
c(t) = G(t)c(t), t = 1, . . . , T, (2)

where A(t) and B(t) are Vandermonde matrices with generators

{ejωf (t)}F
f=1 and {ejνf (t)}F

f=1 respectively, and the structural ma-
trix G(t) := A(t) � B(t). Suppose that the signal subspace of
the time-varying correlation matrix of x(t) is Q(t), then Q(t) and
G(t) share the same column space, therefore there exists a nonsin-
gular transformation matrix T (t) of size F × F such that

G(t) = Q(t)T (t). (3)

The proposed fast recursive 2-D frequency tracking has four steps:
firstly, apply the LOAFR1 algorithm to estimate the signal subspace
Q(t); secondly, estimate the transformation matrix T (t) by per-
forming EVD to an adaptive weighted matrix; then, obtain the es-
timates of G(t) through (3) and estimate the 2-D DOAs by dividing
the elements in G(t); finally, update the weighting factors according
to the current estimates of DOA. The updated weighting factors are
applied to estimate T (t + 1) in the next snapshot. We describe the
proposed algorithm in detail in the following.

2.1. Subspace Tracking Based on the LOAFR1 Algorithm

We adopt the LOAFR1 subspace tracking algorithm [6] to estimate
the signal subspace Q(t) from x(t) adaptively. The initialization
process of the LOAFR1 algorithm is

Q(0) =

[
IF

0(MN−F )×F

]
, P (0) =

[
IF

0(MN−F )×F

]
,

Θ(0) = IF , ρ = 0.85.

At time t, the updating process of the LOAFR1 algorithm is

h(t) = QH(t− 1)x(t), (4)

P (t) = ρP (t− 1)Θ(t− 1) + (1− ρ)x(t)hH(t), (5)

Q(t)L(t) = P (t), by truncated QR factorization, (6)

Θ(t) = QH(t− 1)Q(t). (7)

2.2. Estimation of the Transformation Matrix T (t)

In the following, we use a recently developed method [4], which is
called “weighted diagonalization”, to solve for T (t). We construct
a matrix pencil along the elevation dimension of Q(t) such that

U 1,1(t) :=
([

IM−1 0(M−1)×1

]⊗ IN

)
Q(t), (8)

U 1,2(t) :=
([

0(M−1)×1 IM−1

]⊗ IN

)
Q(t). (9)

Then, it can be verified that

M 1(t) := U †
1,1(t)U 1,2(t) = T−1(t)D

(
ω(t)

)
T (t),

where ω(t) :=
[
ejω1(t) ejω2(t) · · · ejωF (t)

]T
. Similarly we con-

struct a matrix pencil along the azimuth dimension of Q(t) such that

U 2,1(t) :=
(
IM ⊗ [

IN−1 0(N−1)×1

])
Q(t), (10)

U 2,2(t) :=
(
IM ⊗ [

0(N−1)×1 IN−1

])
Q(t), (11)

and it can be verified that

M 2(t) := U †
2,1(t)U 2,2(t) = T−1(t)D(ν(t))T (t),

where ν(t) :=
[
ejν1(t) ejν2(t) · · · ejνF (t)

]T
. We introduce two

variable complex weighting factors α1(t− 1) and α2(t− 1), which
are initialized randomly and updated adaptively according to Section
2.4. Consider the EVD of the following weighted matrix

M (t) := α1(t− 1)M 1(t) + α2(t− 1)M 2(t) (12)

= T−1(t)D(ζ(t))T (t), (13)

where ζ(t) := [ζ1(t) ζ2(t) · · · ζF (t)]
T

, and

ζf (t) := α1(t− 1)ejωf (t) + α2(t− 1)ejνf (t), (14)

for f = 1, . . . , F . Consider the column scaling and permutation
ambiguity, the eigen-decomposition of M (t) of (13) gives

T sp(t) := TΛ(t)Δ(t), (15)

where Λ(t) is a nonsingular diagonal column scaling matrix and
Δ(t) is a permutation matrix.

2.3. Estimation of DOAs

Once the transformation matrix T sp(t) is obtained, we estimate G(t)
according to (c.f. (3)) Gsp(t) = Q(t)T sp(t). Since G(t) =
A(t) � B(t), the elevation and azimuth angles of the same target
appear in the same column of G(t). Thanks to this structure, we can
obtain the exponentials containing {ωf (t)} and {νf (t)} by dividing
suitably chosen elements of the columns of Gsp(t). Therefore the
column scaling will not have material effect on the algorithm. Since
there are many quotients that can be regarded as the estimate of the
exponentials, we take average over them to reduce estimation error
variance in the case when the observation is noisy. This method is
the so called “circular mean” in direction statistics. However, be-
cause of the existence of the permutation ambiguity Δ(t), the order
of estimated angles is different from the true order in (2). Suppose
the elevation and azimuth angles of the g-th target appear in the f -th
column of Gsp(t), then ejωg(t) can be estimated by

ejωg(t) =
1

(M − 1)N

MN∑
n=N+1

gn,f (t)

gn−N,f (t)
, f, g ∈ {1, . . . , F}.

(16)
where gn,f (t) is the (n, f)-th element of Gsp(t). Similarly, ejνg(t)

can be estimated by

ejνg(t) =
1

M(N − 1)

MN∑
n=2

mod (n,N)�=1

gn,f (t)

gn−1,f (t)
, f, g ∈ {1, . . . , F}.

(17)
Finally ωg(t) and νg(t) of the g-th target can be obtained by

ωg(t) = I
(
log ejωg(t)

)
, νg(t) = I

(
log ejνg(t)

)
, (18)

where I(·) stands for the imaginary part.
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2.4. Update of the Weighting Factors

Similar to [4], the weighting factors α1(t − 1) and α2(t − 1) in
(12) can be optimized so that the performance of eigenvector-based
estimation can be improved. However the optimization algorithm
(i.e., SQP) used in [4] is computational demanding and not suit-
able for a tracking algorithm. Here we propose a low-complexity
method to dynamically adjust the weighting factors. If we assume
|αi(t)| ≤ 0.5, for i = 1, 2, then it is obvious that |ζf (t)| ≤ 1,
for f = 1, . . . , F . For the EVD in (13), it is shown in [5] that the
perturbation of the f -th eigenvector tf (t) is

Δtf (t) = T (t)Df (t)T
−1(t)ΔM (t)tf (t), (19)

where Df (t) is diagonal matrix with [Df (t)]f,f = 0 and [Df (t)]g,g

= 1
ζf (t)−ζg(t)

for g �= f . In order to minimize the estimation errors,

we should minimize the perturbationΔT (t) and thus the norm of all
Df (t), f = 1, . . . , F . Therefore we propose to solve the following
optimization problem

ζopt(t) = argmin
ζ(t)

Γ(ζ(t)), |ζf (t)| ≤ 1, f = 1, . . . , F. (20)

Γ(ζ(t)) :=
F∑

f=1

F∑
g=1
g �=f

1

|ζf (t)− ζg(t)| . (21)

It can be verified that Γ(ζ(t)) ≤ F (F − 1) 1

β(ζ(t))
, where

β(ζ(t)) = min
g=1
g �=f

|ζf (t)− ζg(t)| . (22)

In order to solve (20), we can maximize β(ζ(t)). If F ≤ 6, it is easy
to prove that the optimal {ζf (t)}F

f=1 should distribute regularly in
the unit circle such that

ζopt =
[
1 ej2π/F · · · ej2π(F−1)/F

]T

. (23)

For F > 6, the problem is related to the circle packing problem and
solved in [3]. If we define α(t) := [α1(t) α2(t)]

T , since ω(t) and
ν(t) change continuously, at time t+ 1, Eqn. (14) become

ζ(t+ 1) =
[

ω(t+ 1) ν(t+ 1)
]
α(t)≈[

ω(t) ν(t)
]
α(t) (24)

In order to make ζ(t+1) close to the optimal distribution as in (23),
we update α(t) by solving following least-squares (LS) problem

α(t) = argmin
α

∥∥[ ω(t) ν(t)
]
α − ζopt

∥∥ . (25)

The updated α(t) is employed in (12) at time t+ 1.
Since the DOA of one target vary continuous, we can eliminate

the permutation ambiguity Δ(t) and associate the DOA estimate at
time t with those at time t − 1 by minimizing the difference of the
exponentials at time t and those at time t− 1

po = argmin
p

{ F∑
f=1

[ ∣∣∣ejωp(f)(t) − ejωf (t−1)
∣∣∣2+

∣∣∣ejνp(f)(t) − ejνf (t−1)
∣∣∣2 ]},

Here p = {p(1) p(2) · · · p(F )} is a permutation of {1 2 · · · F}.

ejωp(f)(t) and ejνp(f)(t) are the estimates at time t obtained in (16)
and (17) respectively. We append the current DOA estimate to the
DOA trajectory as ωf (t) = ωpo(f)(t) and νf (t) = νpo(f)(t).

We count the consumed flops of the proposed algorithm in Ta-
ble 1. In practise, we use Gauss elimination to solve the equa-
tion UH

1,1(t)U 1,1(t)X = UH
1,1(t)U 2,1(t) to obtain M 1(t). The

method of normal equations [1] is employed to solve the LS prob-
lem (25).

Table 1. The complexity order of the proposed algorithm

Algorithm Operations Complexity Order

h(t) = QH(t− 1)x(t) in (4) MNF
Updating P (t) as (5) MNF 2 +MNF + F 2

QR factorization to P (t) 2MNF 2

Θ(t) = QH(t− 1)Q(t) in (7) MNF 2

M 1(t) = U †
1,1(t)U 1,2(t) 2MNF 2 + 8F 3/3

M 2(t) = U †
2,1(t)U 2,2(t) 2MNF 2 + 8F 3/3

EVD of M (t) 25F 3

G(t) = Q(t)T (t) MNF 2

Estimation of eωg(t) by (16) (M − 1)NF

Estimation of eνg(t) by (17) M(N − 1)F
min

∥∥[ω(t) ν(t)]α(t)− ζopt

∥∥ 4F

Total 9MNF 2 + 30F 3

3. SIMULATION RESULTS

In this section, we present the simulation results. We consider three
moving targets, whose DOAs vary as linear functions of time. There-
fore ωf (t) and νf (t) are sinusoidal functions of time. The size of the
URA is 10 × 10. The observation signal from the array is polluted
by complex additive white Gaussian noise (AWGN), i.e., Eqn. (2)
becomes

x(t) = G(t)c(t) + n(t),

where n(t) is noise with variance σ2. The signal-to-noise ratio
(SNR) is defined as SNR = −10 log10 σ2. The sampling period
is Ts = 0.1 ms and the tracking duration is from 0 s to 0.1 s, there-
fore there are T = 1000 snapshots. The amplitudes {cf (t)}T

t=1 are
drawn from independent normal distributions.

Fig. 1 illustrates the true and estimated DOA trajectories of the
moving targets in the Π × Π plane at SNR = 2dB for 5 noise re-
alizations. The point in the plane with coordinates (ωf (t), νf (t))
represents the 2-D DOA of the f -th target at time t. As time elapses,
these points form three trajectory curves that describe the variation
of the 2-D DOAs of the three moving targets. As we can see from
Fig. 1, the estimated trajectories match well to the true trajectories.
In Fig. 2 and Fig. 3, we plot the variation of the elevation and az-
imuth angles, respectively, as functions of time in the unit of Ts at
SNR = 2dB for 5 noise realizations. These results demonstrate that
the proposed algorithm can track the 2-D DOA variations closely.

We also evaluate the performance of the proposed algorithm in
various SNRs through Monte Carlo simulation. The scenario is the
same as the previous experiment except that the number of snap-
shot is T = 200. For comparison, we also simulate another 2-D
frequency tracking algorithm by combining the LOAFR1 subspace
tracking [6] and the 2-D Unitary ESPRIT algorithm [9], which we
call “LOAFR1 + 2D Unitary ESPRIT”. Different from our proposed
algorithm, this algorithm uses the 2-D Unitary ESPRIT algorithm
to estimate (ωf (t), νf (t)) from Q(t). The normalized mean square
error (NMSE) is defined as

NMSE =
1

2FT

T∑
t=1

F∑
f=1

[∣∣∣∣ ω̂f (t)− ωf (t)

ωf (t)

∣∣∣∣2 + ∣∣∣∣ ν̂f (t)− νf (t)

νf (t)

∣∣∣∣2
]

,

where ω̂f (t) and ν̂f (t) are estimated DOAs. We average the NMSE
over 1000 realizations and plot the NMSE of the two algorithms in
Fig. 4. It is evident that our proposed algorithm outperforms the
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Fig. 1. The trajectory of the true and estimated 2-D DOAs for three
moving targets (SNR = 2dB)
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Fig. 2. The true and estimated elevation angles for three moving
targets (SNR = 2dB)

“LOAFR1 + 2D Unitary ESPRIT” algorithm in moderate and high
SNR range in Fig. 4. This demonstrates the advantage of the pro-
posed adaptive weighted diagonalization scheme since the subspace
tracking steps of the two algorithms are identical. Notice that in the
high SNR range the floor of NMSE implies these two trackers are
both biased estimators due to the estimation delay.

An interesting problem under investigation is the tracking of
multiple moving targets when the signal powers fluctuate as the tar-
gets move, and the number of signals may also vary. For example,
if the number of targets varies, an adaptive order selection approach
similar to that of [6] may be considered, and the least squares prob-
lem (25) also changes.
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