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ABSTRACT

Target tracking using a radar array system is considered. A sig-
nal model which includes the effects of path loss, signal delay,
Doppler shift and angle-of-arrival is adopted. The conventional
approach to radar tracking assumes that the raw measurements are
processed to produce a collection of candidate target detections.
We propose a new approach in which the raw received measure-
ments are used for tracking. Performance bounds and a simulation
analysis of lters developed for each model demonstrate the per-
formance gains which can be achieved by tracking with raw sensor
measurements.

Keywords: Radar tracking, active arrays.

1. INTRODUCTION

This paper is concerned with the problem of tracking a target ob-
served by a radar array system. Although radar signal processing
has traditionally focussed on the use of receivers consisting of a
single antenna [8], a receiver array allows more accurate estima-
tion of range and Doppler and permits direction and, in principle,
direction rate-of-change, to be estimated.

The most common approach to the radar tracking problem is
to assume that the receiver measurements are processed to produce
a set of candidate target measurements which are then suppiled
to the tracking algorithm [2]. This approach is adequate at high
signal-to-noise ratios (SNRs). However, as the SNR decreases the
tracking algorithm will be provided with an increasing number of
false measurements, which must be resolved via data association
[1], or, if detection thresholds are increased, reduced information
regarding the target.

This paper investigates the possibility of tracking using the
raw received measurements. First, performance bounds are de-
rived for tracking with measurements obtained directly from the
receiver and with measurements which have been processed to
produce detections. The performance bound used here is the poste-
rior Cramér-Rao bound (PCRB) [8] which lower bounds the mean
square error of random parameter estimators. The PCRB is used
to quantify the achievable performance gains from using received
mesurements directly in the tracker rather than detection measure-
ments. Then, algorithms for tracking using the two measurement
models are developed and compared. Tracking is performed using
the unscented Kalman lter [6].

A similar idea was adopted in [10] although the approach and
signal model differ considerably from those used here. Perfor-
mance bounds for the static estimation problem were derived and
analysed in [3] for a model similar to that considered here. The
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model used here is more general as it includes the effects of path
loss and time-varying direction of arrival, as suggested in [9].

The paper is organised as follows. The notation and signal
models are given in Section 2. Posterior Cramér-Rao bounds are
derived in Section 3 and the tracking algorithms are brie y de-
scribed in Section 4. Section 5 contains a performance compari-
son.

2. NOTATION AND MODELING

The radar array tracking problem will be formulated as a nonlin-
ear ltering problem. It is assumed that measurements are taken
in discrete-time with tk denoting the kth sampling instant, k =
1, 2, . . .. The difference Tk = tk − tk−1 will be referred to as the
state sampling period.

The target is assumed to move in a plane. The target state at
time tk is denoted asxk = [xk, ẋk, yk, ẏk, ak, bk]′ where (xk, yk)
is the target position in Cartesian coordinates, the dot notation de-
notes differentiation with respect to time and ak and bk are the
real and imaginary parts of the target re ection coef cient. It is
assumed that the target velocity and the re ection coef cients are
subject to random variations. This leads to the dynamic model,

xk = F kxk−1 + vk, (1)

where {vk} is a white Gaussian random process with covariance
matrixQk and

F k = diag
„

I2 ⊗
»

1 Tk

0 1

–
, I2

«
, (2)

Qk = diag
„

I2 ⊗ κ1

»
T 3

k /3 T 2
k /2

T 2
k /2 Tk

–
, κ2TkI2

«
(3)

with⊗ the Kronecker product and Im them×m identity matrix.
The state is observed through one of the following two mea-

surement models.

2.1. Received measurement model

Signals are transmitted at times tk, k = 1, 2, . . .. The signals
re ected from the target are received by a M -element array. It is
assumed that the coordinate axes are selected so that the array is
oriented along the x-axis. The received signals are converted to
baseband and sampled with sampling period P . The nth sample
of the received signal is, for n = 0, . . . , N − 1,

yk(nP ) = α(xk)s(nP − τ (xk))ejν(xk)nP a(nP ; xk) + wk,n,
(4)
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where {wk,n} is a zero-mean circular white Gaussian process with
covariance matrix σ2IM and s is the unit energy transmitted sig-
nal. The vector a is the time-varying steering vector,

a(t; x) =

2
6664

1

e−jd̄[cos(θ(x))−sin(θ(x))θ̇(x)t]

...
e−j(M−1)d̄[cos(θ(x))−sin(θ(x))θ̇(x)t]

3
7775 , (5)

where d̄ = 2πd/λ with d the separation between the elements of
the sensor array and λ the wavelength of the carrier signal. The
target-related quantities appearing in (4) and (5) are de ned as fol-
lows. Consider a state vector x = [x, ẋ, y, ẏ, a, b]′. The received
signal amplitude α(x) and delay τ (x) are

α(x) =
√

E(a + jb)/(r(x)ρ(x)), (6)
τ (x) = [r(x) + ρ(x)]/c, (7)

where r(x) and ρ(x) are the distances between the target and the
transmitter and receiver, respectively, E is the transmitted energy
and c is the propagation speed. The Doppler shift applied to the
signal is

ν(x) = 2π[Ω(x) + ω(x)]/λ. (8)
where Ω(x) and ω(x) are range rates between the transmitter and
receiver, respectively. The angle of arrival and it’s time derivative
are given by

θ(x) = arctan[(y − ζ)/(x− ξ)], (9)

θ̇(x) = [ẋ(ζ − y)− ẏ(ξ − x)]/ρ(x)2, (10)

where (ξ, ζ) is the receiver position. The received signal samples
are collected in the NM × 1 vector

yk = [yk(0)′, . . . , yk((N − 1)P )′]′. (11)

The signal model (4) makes the standard narrowband assumptions
in addition to the approximation [9]

cos(θ + θ̇t) ≈ cos(θ)− sin(θ)θ̇t. (12)

Eq. (12) is valid if θ̇t is small over the surveillance duration. Note
that the surveillance duration NP is much smaller than the state
sampling period Tk.

2.2. Detection measurement model

The second measurement model assumes that the measurements
yk have been processed in an optimal manner to produce esti-
mates of the target parameters. In high noise scenarios there is a
signi cant chance that the estimation procedure will produce false
estimates. It is desired to reject such estimates. The optimal pro-
cedure would be to compare the likelihood ratio with a selected
threshold [8]. Although this requires knowledge of the unknown
target parameters it will be assumed here that this processing has
been performed. It is assumed that the selected threshold is such
that the probability of accepting a false estimate is negligible. This
is reasonable in typical radar systems [5]. The process of rejecting
unsuitable estimates can then be modelled by adopting a detection
probability PD(k) which is the probability that an estimate will
be accepted at the kth sample. Then, at time tk a measurement is
produced with probability PD(k) according to

zk = xk + ek, (13)

where {ek} is a zero-mean white Gaussian process with covari-
ance matrix R(xk) with R(xk)−1 the Fisher information matrix
(FIM) for the model (4) with xk a deterministic parameter. With
probability 1−PD(k) no measurement is produced. The assump-
tions adopted here favour the detection measurement model since
optimal detection and estimation cannot be performed in practice.

In the framework outlined in this section the tracking problem
can be solved in an optimal manner, in the minimum mean square
error sense, by recursively computing the posterior distribution of
the state. This is not possible so sub-optimal techniques are re-
quired. One possibility will be described in Section 4.

3. DERIVATION OF THE PCRBS

The PCRB provides a lower bound on the mean square error (MSE)
of estimators of random parameters [8]. The PCRB for radar track-
ing using the measurement models of Section 2 will be derived in
this section.

3.1. Received measurement model

Assume that the target state xk evolves according to (1) and is ob-
served through (4). The procedure of [7] can be used to recursively
compute the PCRB for estimators of xk. Assume that the estima-
tor x̂k−1 of xk−1 conditional on measurements up to time tk−1

satis es mse(x̂k−1) ≥ J−1
k−1. Then, mse(x̂k−1) ≥ J−1

k where

Jk = Ck + Dk −B′
k(Jk−1 + Ak)−1Bk, (14)

with
Ak = −E[∇xk−1∇′xk−1 log p(xk|xk−1)] = F ′kQ−1

k F k,

(15)

Bk = −E[∇xk−1∇′xk
log p(xk|xk−1)] = −F ′kQ−1

k , (16)

Ck = −E[∇xk∇′xk
log p(xk|xk−1)] = Q−1

k , (17)
Dk = −E[∇xk∇′xk

log p(yk|xk)]. (18)
where ∇ is the gradient operator. The expectation (18) can be
expanded as Dk = E[Λ(xk)] where the expectation is over the
target state and Λ(xk) = E[∇xk∇′xk

log p(yk|xk)|xk]. It can
then be shown that

Λ(xk) = 2/σ2
N−1X
n=0

Re
˘∇xkμn(xk)∗[∇xkμn(xk)′]′

¯
, (19)

where ∗ denotes conjugate transpose and, for a target state x,

μn(x) = α(x)s(nP − τ (x))ejν(x)nP a(nP ; x). (20)
The gradient of μn can be expanded as

∇xμn(x)′ =∇xα
∂μ′n
∂α

+∇xτ
∂μn

∂τ
+∇xν

∂μn

∂ν

+∇xθ
∂μn

∂θ
+∇x θ̇

∂μn

∂θ̇
. (21)

The derivatives required in (21) can be found from (6), (7), (8)-
(10) and (20) and the resulting expression for the gradient of μn

substituted into (19). The matrix Dk is then found by taking the
expectation of Λ(xk) over the target state xk. This cannot be
found exactly but can be approximated by Monte Carlo simula-
tion. Let x1

k, . . . , xL
k denote a collection of target states generated

according to (1). The matrixDk is then approximated as

D̂k = 1/L
LX

l=1

Λ(xl
k). (22)
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3.2. Detection measurement model

PCRBs for tracking with a non-zero miss probability have been
proposed in [4] and [11]. It was shown in [5] that the enumeration
bound of [4] always provides a tighter bound then the computa-
tionally simpler information reduction factor bound of [11]. The
enumeration bound will be adopted here. De ne the detection in-
dicator dk ∈ {0, 1} at time tk with dk = 1meaning that the target
is detected and dk = 0 denoting otherwise. Let d1:k ∈ {0, 1}k

denote a sequence of detection of indicators. Then,

mse(x̂k) ≥ J−1
k =

X
d1:k∈{0,1}k

Pr(d1:k)Ek(d1:k)−1, (23)

where

Ek(d1:k) = Ck + dkE[R(xk)−1]

−B′
k(Ek−1(d1:k−1) + Ak)−1Bk, (24)

Pr(d1:k) =
kY

l=1

PD(l)dl [1− PD(l)]1−dl . (25)

The matrices Ak, Bk and Ck are given in (15)-(17). Note that
computation of the enumeration bound (23) requires the use of
a PCRB recursion for each possible sequence of detections and
misses. In practice, many of the sequences are unlikely and need
not be included in (23). The FIMR(xk)−1 can be found as

R(xk)−1 = −E
ˆ∇xk∇′xk

log p(yk|xk)
˜

= Λ(xk), (26)

where Λ(xk) is given in (19). The expectation required in (24)
must be approximated as in (22).

It is interesting to compare the bounds (14) and (23). If PD =
1 then the two bounds are identical. If PD < 1, it can be shown
using the results of [5] that the enumeration bound for the detec-
tion measurement model will exceed the bound for the received
measurement model. This indicates that better performance can
potentially be achieved using the received measurements directly
rather than detections.

4. TRACKINGWITH THE UNSCENTED KALMAN
FILTER

Although superior performance is potentially possible using the
received measurement model, it remains to be seen if the achiev-
able improvements can be realised with practical algorithms. The
basic ltering tool used here is the unscented Kalman lter (UKF)
[6]. Although the detection measurement model of (13) is linear
in the target state, the presence of measurement noise with a state
dependent covariance matrix means that the Kalman lter is not
the optimal Bayesian estimator.

Consider ltering using measurements from the received mea-
surement model (4). The UKF represents the state estimate at time
k−1 by a mean x̂k−1|k−1 and covariance matrixP k−1|k−1. Since
the dynamic equation (1) is linear and Gaussian the prediction step
of the UKF can be performed exactly to give

x̂k|k−1 = F kx̂k−1|k−1, (27)
P k|k−1 = F kP k−1|k−1F

′
k + Qk. (28)

To perform the correction step, sigma points X i
k and weights wi,

i = 1, . . . , s are selected. The sigma points and weights are such
that the sample mean and covariance matrix are equal to x̂k|k−1

and P k|k−1. Let Y k = [Re{yk}′, Im{yk}′]′. The expected mea-
surements conditional on each sigma point are calculated as

Yi
k = [Re{μ(X i

k)}′, Im{μ(X i
k)}′]′, (29)

whereμ(x) = [μ0(x), . . . , μN−1(x)]′ withμn(x) given in (20).
The corrections to the predicted mean and covariance matrix are
then computed as

x̂k|k = x̂k|k−1 + ΨkS−1
k (Y k − Ŷ k), (30)

P k|k = P k|k−1 −ΨkS−1
k Ψ′

k, (31)

where

Ŷ k =

sX
i=1

wiYi
k, (32)

Sk = σ2I2NM +
sX

i=1

wi(Yi
k − Ŷ k)(Yi

k − Ŷ k)′, (33)

Ψk =
sX

i=1

wi(X i
k − x̂k|k−1)(Yi

k − Ŷ k)′. (34)

The UKF recursion is potentially computationally expensive due
to the inversion of the 2NM -dimensional matrix Sk in (30). Two
steps are taken to reduce computational expense. First, range gat-
ing based on the prediced target state is used to ignore samples
which are unlikely to contain target re ections. Second, it is pos-
sible to perform the UKF correction without inverting Sk. The
equations demonstrating this have been omitted due to a lack of
space. The recursion de ned by (27), (28), (30) and (31) will be
referred to as the received measurement UKF (RM-UKF).

The prediction step of the UKF recursion for the detection
measurement model is identical to that used for the received mea-
surement model. Recall the detection indicator dk which takes
the value one if the target is detected and is zero otherwise. After
selecting sigma points as above, the correction step for the UKF
recursion for the detection measurement model is

x̂k|k = x̂k|k−1 + dkΨkS−1
k (zk − x̂k|k−1), (35)

P k|k = P k|k−1 − dkΨkS−1
k Ψ′

k, (36)

whereΨk = P k|k−1 and

Sk = P k|k−1 +
sX

i=1

wiR(X i
k). (37)

The recursion de ned by (27), (28), (35) and (36) will be referred
to as the detected measurement UKF (DM-UKF).

5. SIMULATION RESULTS

The performances of the two tracking methods are compared using
Monte Carlo simulations. In this scenario the transmitter is located
at (35, 0) and the receiver position is (90, 10). The transmitted
signal is

s(t) =
1√

2B + 1

BX
b=−B

exp{[jϑ − 1/(2ν2)](t− bA)2}
(πν2)1/4

(38)

Note that
R |s(t)|2 dt = 1. The scaling parameter ν is selected to

give an effective duration of D = 7ν = 250ns. The chirp rate is
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Figure 1: RMS position error of the RM-UKF (dashed) and DM-
UKF (dotted) plotted against time for an SNR of (a) 10dB and (b)
0dB. The PCRB for the RM model is a solid line and the PCRB
for the DM model is a dash-dot line.

ϑ = 3.2π × 1014. The number of pulses is 2B + 1 = 21 and
the pulse repetition interval is A = 100μs. The observations are
sampled with sampling period P = 5ns. The carrier frequency is
3GHz. The receiver hasM = 5 elements with spacing d = 0.4m.
The state sampling period is Tk = 1s for k = 1, . . . , K where
K = 20 is the total number of sampling instants.

The initial target state is Gaussian with mean
[5, 9.65, 180, 11.5, 0.07, 0.07]′ and covariance matrix
diag(4, 0.5, 4, 0.5, 0.1, 0.1). The target state evolves according to
(1) with κ1 = 1/100 and κ2 = 2 × 10−5. Note that the target
moves away from the transmitter and receiver so that the tracking
problem becomes more dif cult as the observation interval contin-
ues. For a received signal with amplitude α sampled with period P
and embedded in noise with variance σ2, let S = α2/(σ2P ) de-
note the signal-to-noise ratio. For a false alarm probability PF A, it
can be shown that the detection probability for the likelihood ratio
test is

PD = 1− Φ
h
Φ−1(1− PF A)−

√
2MS

i
, (39)

whereΦ is the distribution function of a standard Gaussian random
variable. Here we x PF A = 10−5. The detection probability
used in the detection measurement model is calculated along the
nominal state trajectory, i.e., the state trajectory with exact initial
conditions and no process noise.

Since the amplitude of the received signal, and hence the SNR,
vary throughout the observation interval, we use the average SNR
of the measurements received for the nominal target trajectory as a
single measure of the severity of the scenario. SNRs of 10dB and
0dB are considered. For an SNR of 10dB the transmitted signal
is detected with probability very close to one at all time instants.
For an SNR of 0dB the detection probability is close to one at
the beginning of the observation interval but falls sharply as the
target moves away from the transmitter and receiver. At the nal
sampling instant the detection probability is 0.135.

Figure 1 shows the RMS position errors for each SNR av-
eraged over 100 Monte Carlo realisations. The PCRBs for each
measurement model are also shown. For an SNR of 10dB the per-
formances of the two lters and the PCRBs are almost identical.
This is because measurements of the target are obtained with a
probability very close to one in the detection model. A signi cant
difference can be seen for the lower SNR of 0dB. As expected the
PCRB for the RMmodel is much better than the PCRB for the DM
model. The encouraging result is that the suboptimal RM-UKF is
able to perform very close to the PCRB and signi cantly better
than the DM-UKF.

6. CONCLUSIONS

We considered the problem of target tracking using a radar array.
Our approach to the problem is based on passing the received sen-
sor measurements directly to the tracking algorithm rather than
following the customary approach of rst processing these mea-
surements to produce detections. Performance bounds were de-
rived for both the received measurement and detection measure-
ment models. This showed that the acheivable performance with
the raw measurement model is superior. A simulation analysis
showed that it is possible for a ltering algorithm of reasonable
computational expense to realise these performance gains.
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