
PARTICLE FILTERING FOR TARGET TRACKING WITH MOBILE SENSORS

Yao Li and Petar M. Djurić
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ABSTRACT
Recent progress in distributed robotics and low power embedded
systems has led to development of mobile sensor networks. Con-
trolled mobility, moving sensors intentionally, enables a new set of
possibilities in wireless sensor networks and facilitates many appli-
cations in signal processing areas such as target tracking. In this
paper we consider the problem of tracking a target using three mo-
bile sensors that measure the received signal strength (RSS) from the
target. We propose the use of particle ltering where the positioning
of the mobile sensor is based on the predicted target’s positions. In
deciding how to deploy the sensors, we have used the Cramér-Rao
lower bound (CRLB) that we have derived for our scheme. The per-
formance of the method is investigated by simulations and compared
to tracking by traditional static sensor network.

Index Terms— wireless sensor networks, particle ltering, Pos-
terior Cramér-Rao lower bound, Monte Carlo methods, root mean
square error

1. INTRODUCTION

The rapid progress in micro-electro-mechanical systems (MEMS)
and radio frequency (RF) design makes the development of wireless
sensor networks (WSNs) with a variety of applications in both civil
and military aspects of our human life quite intriguing. These net-
works involve large scale, low power, distributed sensors nodes with
limited individual capability. The maximization of the sensing utility
while increasing the effectiveness of the whole network has become
a very popular research eld nowadays [1].

The progress in distributed robotics and low power embedded
systems has led to the development of mobile sensor networks [2].
Controlled mobility, moving sensors intentionally, enables a new set
of possibilities for sensor networks. Mobile sensors often provide
better information. In this paper we address networks with a fusion
center, which in principle can perform tasks like detection, localiza-
tion and tracking based on sensor measurements more accurately if
the measurements come from mobile sensors [3].

In this paper we focus on the problem of target tracking with
mobile sensors. Sensors trajectory planning is a critical issue for
this problem. Observer trajectory planning has been addressed in
[4], where the optimal paths are derived by maximizing the mutual
information between the nal target state and the entire measure-
ment sequence. In [5], posterior Cramér-Rao lower bound (PCRLB)
was used as the sensor motion criterion. These methods, however,
involve a multi-step planning and impose strong memory require-
ments and computational burden to the system. Here we propose
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a recursive update of the sensors’ positions based on online target
state estimates obtained by a particle ltering algorithm [6]. At each
time instant, the fusion center predicts the next position of the tar-
get, and based on it decides where to send the mobile sensors whose
measurements are used for tracking the target.

The paper is organized as follows: In Section 2, we formulate the
problem, and in Section 3 we present the particle ltering algorithm
with its implementation in our proposed mobile sensor network. We
derive the PCRLB for mobile tracking in Section 4. In Section 5, we
show the performance of the proposed algorithm with comparison to
static sensor tracking. We make our nal remarks in Sections 6.

2. PROBLEM FORMULATION

The target motion model [7] is based on the assumption that its ve-
locity is subject to an unknown acceleration, which gives

xt+1 = Φtxt + Γtwt (1)

where the transition matrixΦt and Γt are given by

Φt =

(
1 Ts

0 1

)
⊗ I, Γt =

(
T2
s
2
Ts

)
⊗ I,

where ⊗ denotes the Kronecker product. The state vector for the
target is de ned by xt = [x1,t, x2,t, ẋ1,t, ẋ2,t]

�, where x1,t, x2,t
denote the target location and ẋ1,t, ẋ2,t the target velocity in a two-
dimensional plane at time instant t. The symbol Ts is the sampling
time interval and wt ∼ N (0,Qw) is the target propagation noise,
representing the target acceleration uncertainty. We assume that the
target motions in the x1 and x2 directions are statistically indepen-
dent, and thus Qw = diag(σ2w,1, σ

2
w,2).

Sensor measurements could include time of arrival (TOA), di-
rection of arrival (DOA), or received signal strength (RSS) [8]. Here
we use the RSS as sensor observations. The RSS is comparatively
less costly yet traditionally seen as a coarse measurement of range.
The signal power reaching the n−th sensor can be measured as a
log-normal variable approximated by a Gaussian distribution, i.e.,

y
(n)
t = P0 − 10α log10

(
|s(n)t − ρt|

d0

)
+ ε

(n)
t (2)

where s(n)t = [s
(n)
1,t , s

(n)
2,t ] and ρt = [x1,t, x2,t], for n = 1, · · ·N

are the positions of the n-th sensor and the target at time instant t,
respectively; ε(n)t is the measurement Gaussian noise with ε(n)t ∼
N(0, σ2ε); P0(dB) is the received power at a reference distance d0;
α is a parameter that is used to model path loss. The power P0 and
the paremetr α are assumed known.
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The measured information, y(1:N)t , is sent to the fusion center
at each time instant t. The objective is to track the target state x0:t
based on the observations y1:t = y

(1:N)
1:t .

3. PARTICLE FILTERING

Due to the nonlinearity in the measurement model, we apply parti-
cle ltering for target tracking [6]. We use Bayesian state estimation
and there the information about the state vector given the observa-
tions is obtained from the a posteriori probability density function,
p(x0:t|y1:t). With particle ltering we approximate sequentially the
posterior distributions using a set of random particles with their asso-
ciated weights. The whole method consists of three main steps: (1)
particle propagation,(2) weight updates followed by normalization,
and (3) resampling.

If the random measure at time instant t is denoted by χt =

{x(m)t , ω
(m)
t }Mm=1, the proposed particles are drawn from the im-

portance function π(·), i.e.,

x(m)t ∼ π(xt|x0:t−1, y1:t) (3)

for m = 1, 2, ...,M , where M is the number of particles. The cal-
culation of the weight for each particle is followed by normalization,
that is,

ω
∗(m)
t ∝ p(yt|x(m)t )p(x(m)t |x(m)t−1)

π(x(m)t |x(m)0:t−1, y1:t)
ω
∗(m)
t−1 (4)

and

ω
(m)
t =

ω
∗(m)
t∑M

i=1 ω
∗(i)
t

. (5)

The posterior density is approximated as

p(x0:t|y1:t) ≈
M∑

m=1

ω
(m)
t δ(x0:t − x(m)0:t ). (6)

Resampling is performed whenever necessary in order to avoid the
algorithm’s degeneracy.

Here we do not describe the details of the implementation of
particle ltering to static sensor networks because it has been well
documented in the literature. Instead, we immediately address the
tracking by particle ltering using mobile sensor measurements.

3.1. Proposed mobile tracking algorithm

Good performance of particle ltering using measurements of static
sensors requires dense deployment of the sensors over the whole re-
gion of interest. If the trajectory of the target is in a broad area,
this may need a very large number of sensors to be deployed. Large
number of sensors may further translate to heavy computations at
the fusion center. Moreover, the limited wireless channel capacity
may impose problems that arise from simultaneous transmission of
many signals. Here we propose a tracking methodology with mobile
sensors that relies on a very small number of sensors and will not
have such problems.

First we want to establish a strategy for sensor deployment. For
simplicity, we use only three mobile sensors positioned on a circle in
a two-dimensional plane. Assuming the target is at the center of the
circle, without loss of generality, we x one sensor and want to check
the performance of localization of the target by varying the location
of the other two sensors around the circle. To that end, we use the
Cramér-Rao Lower Bound for target localization. We introduce the

constraint that the other two sensors have symmetric positions with
respect to the rst sensor. In other words, the sensors are positioned
as in Fig. 1(a) where we see them in two different positions. As we
vary the angle θ from 0◦ to 180◦, the CRLB of the target location
varies, achieving its minimum value for θ = 60◦(120◦), Fig 1(b).
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Fig. 1. (a) A target and three sensors deployed on a circle around the
target. (b) CRLB of localization as a function of θ.

3.1.1. Ideal Case

The proposed tracking algorithm dynamically updates the locations
of the mobile sensors by using the target state estimate obtained by
particle ltering. At each time instant t, the fusion center performs
estimation based on the information provided by the sensors. Given
the estimated target state x̂t = [ρ̂t, v̂t]

� and the motion model of
the target, the fusion center predicts the target location at the next
time instant ρ̃t+1, where

ρ̃t+1 = ρ̂t + v̂tTs. (7)

The sensor positions at t+1 are assigned equidistantly around ρ̃t+1

on a circle with radius r. In the ideal case, the sensors are capable
enough of moving to the designated places along with the target. The
ideal location of the n−th sensor at time t+ 1 is given by

s̃
(n)
1,t+1 = x̃1,t+1 − r cos θn (8)

s̃
(n)
2,t+1 = x̃2,t+1 − r sin θn (9)

where θn = 2πn
N

, n = 1, ..., N , and N is the number of sensors.

3.1.2. Realistic Case

In a more realistic scenario, we have to take into consideration the
limitations in mobility of the sensors. We assume that the sensors
follow a linear model for their motion, i.e.,

s
(n)
1,t+1 = s

(n)
1,t + u

(n)
1,t Ts

s
(n)
2,t+1 = s

(n)
2,t + u

(n)
2,t Ts (10)

where u(n)1,t ∈ (umin1 , umax1) and u(n)2,t ∈ (umin2 , umax2) denote
the controlled velocity in the x1 and x2 directions, respectively, by
the n−th sensor. The velocities are assumed constant from t to t+1.
The choice of [u(n)1,t , u

(n)
2,t ] is subject to minimizing the cost function

fn,t+1 = ||s(n)t+1 − s̃(n)t+1|| (11)
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where s̃(n)t+1 is de ned by (8) and (9) and

[u
(n)
1,t , u

(n)
2,t ] = argmin

u1,t,u2,t

fn,t+1(s
(n)
t+1, s̃

(n)
t+1). (12)

With the proposed method, the fusion center is capable in determin-
ing if the mobile sensors can or cannot continue with tracking. This
is done based on the motion model and the sensors’ mobility limita-
tions.

4. POSTERIOR CRAMÉR-RAO LOWER BOUNDS

In this section we show the derivation of the PCRLB for target track-
ing with mobile sensor networks. The PCRLB provides the lower
bound of the mean-square error (MSE) of the estimated states [9].
In the derivation, we follow the approach presented in [10].

First, we rewrite the target state vector in a block form xt =

[x
(1)
t ,x

(2)
t ]� where x(1)t = [v1,t, v2,t]

� and x(2)t = [ρ1,t, ρ2,t]
�.

The target motion model becomes

x(1)t+1 = x(1)t + Ftwt (13)

x(2)t+1 = G(1)t x(1)t +G(2)t x(2)t +G(3)t x(1)t+1 (14)

where

F = TsI, G(1)t =
Ts

2
I, G(2)t = I, G(3)t = G(1)t .

The information matrix Jt can be updated recursively through

St+1 =

⎡
⎣ S11t+1 S12t+1 S13t+1

S21t+1 S22t+1 S23t+1
S31t+1 S32t+1 S33t+1

⎤
⎦

= M−T
t

⎡
⎣ J11t +H11t J12t +H12t H13t
(J12t +H12t )

T J22t +H22t H23t
(H13t )

T (H23t )
T H33t

⎤
⎦M−1

t

Jt+1 =

[
S22t+1 S23t+1
S32t+1 S33t+1

]
−
[

S21t+1
S31t+1

] [
S11t+1

]−1 [
S12t+1 S13t+1

]
(15)

where

Jt =

[
J11t J12t
J21t J22t

]
, Mt =

⎡
⎣ I 0 0

0 0 I
G(1)t G(2)t G(3)t

⎤
⎦ .

Here St is the information submatrix for [x(1)t−1,xt], and

H11t = E{−Δx(1)t

x(1)t

log p̄t}, H12t = E{−Δx(2)t

x(1)t

log p̄t}

H13t = E{−Δx(1)t+1

x(1)t

log p̄t}, H22t = E{−Δx(2)t

x(2)t

log p̄t}

H23t = E{−Δx(1)t+1

x(2)t

log p̄t}, H33t = E{−Δx(1)t+1

x(1)t+1

log p̄t}

with
p̄t = p(x(1)t+1|xt) · p(yt+1|xt, x

(1)
t+1). (16)

We can write theHt matrix as

Ht = Ht,a +Ht,b (17)

where

Ht,a = E{−Δlog p(x(1)t+1|x(1)t )}
Ht,b = E{−Δlog p(yt+1|xt, x

(1)
t+1). (18)

It can be shown that H11t,a = diag{ 1
σ2w,1

, 1
σ2w,2

} and

H11t,b = E{−Δvt
vt log p(yt+1|vt,ρt, vt+1)}.

Solving for H11t,b, we get

H11t,b = A · E
[

N∑
n=1

B�nBn

]
(19)

where

Bn =

[
x1,t+1 − s

(n)
1,t+1

|ρt+1 − s(n)t+1|2
,

x2,t+1 − s
(n)
2,t+1

|ρt+1 − s(n)t+1|2
]

and A = ( 5Tsα
σε log 10

)2. Recalling that the sensors positions are func-
tions of the previous time target state estimates, they are also ran-
dom variables. So H11t,b is the expectation over vt, vt+1, ρt, yt+1

and s1:Nt+1. Under the considerations of symmetry and independence
among the state space variables, we have

H12t,a = H
22
t,a = H

23
t,a = 0

H33t,a = H
11
t,a, H13t,a = −H11t,a

H13t,b = H33t,b = H11t,b

H12t,b = H23t,b =
2

Ts
H11t,b, H22t,b =

2

Ts
H11t,b.

Given the results above, we can compute the ltering informa-
tion matrix Jt, whose diagonal elements are the PCRLBs of the un-
known target states. Since the calculation of this PCRLB has no an-
alytical solution in closed form, we resort to Monte Carlo simulation
methods.

5. SIMULATION RESULTS

We carried out several computer simulations that compare the perfor-
mance between our proposed tracking algorithm and the traditional
static sensor tracking. For the static sensor network scenario, we
considered N = 50 and N = 100 sensors deployed uniformly in
the region. For the mobile tracking case, we applied N = 3 sensors
only. The parameters in the sensor measurement model were set to
P0 = 30(dB) at d0 = 1m, and α = 2.3. The background noise
level was chosen as σv = 4dB.

The initialization state vector was assumed to have a Gaussian
distribution with mean x̄0 = [0 0 5 5] and covariance matrix C0 =
diag{1002 1002 102 102}. The mobile sensors were positioned
around the predicted location of the target on a circle with radius
r = 100m. As a performance metric, we used the root mean square
error (RMSE) of the estimated states. We ran the experiment with 50
independent trajectories and with 100 runs for each trajectory. The
tracking time is 100 seconds with sampling interval of Ts = 1sec.
We used 1000 particles. The results are shown in Figure 2. The
same parameters were used in the computation of the PCRLBs. The
results are shown in Figure 3. There we see that the mobile tracking
algorithm achieves better performance with less than one tenth of the
sensors from the static network. In Figures 4 and 5, we plotted the
change of RMSE as function of the number of mobile sensors and
the radius of the circle. As expected, they increased with less sensors
and increased circle radius.
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Fig. 2. Comparison for RMSE of x1,t and x2,t.
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Fig. 3. Comparison of the square root of PCRLB of x1,t and x2,t.

6. CONCLUSIONS

In this paper we proposed a tracking problem with a few number
of mobile sensors using particle ltering algorithm. The sensors
moving trajectories were designated based on the real time estimate
of the target state. The one step ahead prediction methodology in
planning the optimal sensors motion was investigated. We derived
the Posterior Cramér-Rao lower Bounds for this tracking scenario.
Some simulation results were presented comparing the performance
of our mobile tracking algorithm with traditional static sensors track-
ing. It was shown that with far less number of sensors, the proposed
method achieved better tracking results.
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