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ABSTRACT

In active sonar tracking applications, targets frequently un-
dergo fading detection performance in which the target’s de-
tection probability can shift suddenly between high and low
values. Using a multistatic active sonar problem, we examine
the performance of sequential track termination tests where
target detections are based on an underlying Hidden Markov
Model (HMM) with high and low detection states. We show
that the Page test is not optimal in this problem and that a K/N
track termination rule yields better performance. Further we
show that a Bayesian sequential test (the Shiryaev test) yields
dramatic performance improvements over both the K/N rule
and the Page test.

Index Terms— Target tracking, multistatic sonar, track
termination, Page test, Shiryaev test

1. INTRODUCTION

In undersea surveillance of large areas, multistatic sonar net-
works show promise in the ability to use many sensors to
cover a large area with overlapping detection coverage, the
achievement of higher data rates from use of multiple sen-
sors (receivers) to process a single active transmission from a
source, and in the geometric diversity that can be achieved by
selecting receiver locations. However, it has been observed
from at-sea testing that sensor detection performance varies
significantly over the sensor network and for a single sensor
over time. In particular, due to geometric, environmental, and
geographic effects a target may be detected by a given sen-
sor with high probability over a number of scans and then
suddenly fade from view as the sensor detection probability
decreases drastically. A key tracking issue therefore becomes
how to adapt the tracking system to account for this fading
detection performance in a multistatic active sonar problem.

In this paper we address the track termination aspect of
this problem. We consider a centralized track management
model that processes time orderedmeasurements from all sen-
sors and include sensor origin information. The sensor detec-
tion performance is modeled as a two-stateMarkov chain with
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high and low detection states. Target-originated measure-
ments (binary detection events) can therefore be described us-
ing a Hidden Markov Model (HMM) structure.

There is a well-developed base of literature covering track
termination for sensors with a fixed probability of detection
(Pd) of the target on a single scan (see e.g., [3]). Examples
include K/N tests (a track is terminated if K or fewer detec-
tions are received in the last N scans) and track score tests.
Track score tests may include the SPRT or Bayesian sequen-
tial tests. If the track score (related to the probability that the
detection sequence is the result of a true track) falls below a
certain value, the track is terminated. However research per-
taining to track termination for sensors with Pd based on a
Markov model has only recently been considered [6].

In this paper we analyze the performance of K/N-based
and sequential track termination tests when target-originated
measurements are described by a HMM with high and low
Pd Markov states. Using only the binary detection events,
it is shown that the K/N test outperforms the Page test over
a portion of its operating characteristic region. This result
is surprising considering the fact that the Page test is proven
to be the optimal sequential test for quickest detection of a
change in measurement distribution and we show how when
the HMM-based detection statistics are used, a key assump-
tion in the optimality proof for the Page test is no longer sat-
isfied. It is next shown that by using a Bayesian version of a
sequential test (the Shiryaev test), significant performance im-
provement is obtained compared to the K/N test. This work
presents significantly updated and improved results from that
originally presented in [4].

2. PROBLEM DESCRIPTION

In themultistatic sonar problem one ormore transmitters trans-
mit active sonar pings. Receivers are positioned to receive
and process acoustic energy in order to detect reflected energy
from the target(s). Because each transmitter-receiver combi-
nation is unique and provides a set of measurements, a sensor
is identified as a specific transmitter-receiver combination.

A scan of data is defined as the measurement data set from
one sensor resulting from one sonar transmission. Although
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Fig. 1. Multistatic source-target-receiver geometry for a sin-
gle source-receiver pair.

the results presented in this paper can be adapted to an ar-
bitrary transmit pattern, the mathematics of the problem are
made much more transparent when one assumes (as is done
in this paper) that each transmitter pings in a regular pattern at
the same period (T seconds). One can therefore define a scan
cycle as the set of scans from all sensors over that period. For
example if there are two transmitters transmitting at a 60 s pe-
riod and two receivers, there are a total of 4 “sensors” and 4
scans of data in one scan cycle.

Raw measurements consist of the propagation time from
source to receiver and the bearing from receiver to target. For
a specific source-receiver combination, the propagation time
defines an ellipse of possible target locations. The intersec-
tion of the received bearing from the target to this ellipse
localizes the measurement to a single point. This geometry
is illustrated in Fig. 1. For the target tracking algorithm,
these measurements are converted to Cartesian coordinates
and the measurement errors quantified using the results from
[7] which account for the sources of measurement errors.

Track filtering is performed using a Kalman filter [1]. The
nearly constant velocity target motion model is used with the
state defined in Cartesian coordinates byx = (x y ẋ ẏ )′.
The measurements z are given as positions (x and y).

2.1. Target Detection Model

A two-state Markov chain detection model is used to describe
a sensor’s probability of detection (Pd) of the target on a sin-
gle scan, similar to that used in [6] except that state transition
probabilities are given in terms of a discrete timemodel rather
than in continuous time. In this model, define u ∈ {0, 1} as
the detection state where u = 0 represents the low detection
probability state (PL

d ), and u = 1 represents the high detec-
tion probability state (PH

d ). The state transition probabilities
are given by p (low to high) and q (high to low).

From this Markov chain detection model, the steady state

probability that a sensor is in a particular state is given by

Pr{u = 0} = q/(p+ q) (1)

Pr{u = 1} = p/(p+ q) (2)

2.2. False Alarm Measurements

False alarms (noise-originated measurements) are assumed
to be distributed uniformly over the surveillance region of a
given sensor with a spatial density of λ, and the number of
false alarms is distributed according to a Poisson distribution.
The false alarm probability (Pfa) for a track at a certain time
is given by the probability that at least one false alarm will
fall within the validation region of the predicted track esti-
mate xk+1|k whose volume is given by [3]

V (δk1 ) = γπ|Sk+1(δk1 )|1/2 (3)

where δk1 is the detection sequence {δ1, . . . , δk} and S is the
innovation covariance. The gate association parameter, γ, is
chosen to yield a specified probability (PG) that a target re-
lated measurement will fall within the validation region when
a true target is being tracked.

As a result Pfa becomes a function of the detection se-
quence up to the current scan and is given by

Pfa(δk1 ) = 1− exp[−λV (δk1 )] (4)

3. TRACK TERMINATION

It is well known that the CUSUM (Page) test yields the quick-
est detection of a change of distribution for the case of i.i.d. ob-
servations [2]. In fact, in a (highly) simplified target track-
ing model where detection of target and false alarms can be
described by Bernoulli random processes with fixed parame-
ters (i.e., Pfa is independent of the detection sequence), the
K/N track termination rule becomes a sufficient statistic for
discrete Page test thresholds. The optimality results of the
Page test have also been extended to some non-i.i.d distribu-
tions (including certain classes of Markov chain structures)
[9]. However, there have been no global optimality results
proven for the case where the distributions are characterized
by HMMs except in the special cases considered by [8] whose
conditions are not satisfied in this application.

In addition to examining the Page test, we also implement
a stopping rule based on a Bayesian formulation of the prob-
lem called the Shiryaev rule [2] which has optimality proper-
ties similar to the Page test.

3.1. Page Test for HMMs

In an HMM the formulation for the Page test is given by [5]

sk = ln
f0(δk|δk−1

1 )
f1(δk|δk−1

1 )
(5)

ck = max(ck−1 + sk, 0) (6)
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where c0 = 0 and with each scan ck is compared to a thresh-
old h. The track is terminated if the threshold is exceeded.
Note that the hypothesis convention used throughout this pa-
per where H1 represents target present (pre-change distribu-
tion for track termination testing) and H0 represents target
absent (post-change distribution for track termination testing)
is opposite of that used in the quickest detection literature.

UnderH0 (target absent), the likelihood function becomes

f0(δk|δk−1
1 ) = [Pfa(δk1 )]

δk [1− Pfa(δk1 )]
1−δk (7)

Under H1 (target present), the likelihood function for the
kth measurement from the ith sensor becomes

f1(δk|δk−1
1 ) =

1∑
l=0

f1(δk|uik = l)Pr{uik = l|δk−1
1 } (8)

where Pr{uik = l|δk−1
1 } is obtained using a Bayesian update

from the prior measurements.
Let Pr{ui1} (used in (8) for k = 1) be given by the steady

state probability of the Markov chain from (1) and (2). As a
recursive procedure Bayes’ rule is applied to obtain the pos-
terior pmf, Pr{uik|δk1}, that will be used in (10),

Pr{uik|δk1} =
f1(δk|δk−1

1 , uik)Pr{uik|δk−1
1 )∑1

l=0 f1(δ
k
1 |δk−1

1 , uik = l)Pr{uik = l|δk−1
1 }
(9)

The prior conditional pmf is updated for the next iteration
using the Markov transition matrixP,(

Pr{uik = 0|δk−1
1 }

Pr{uik = 1|δk−1
1 }

)
= P
(
Pr{ui(k−1) = 0|δk−1

1 }
Pr{ui(k−1) = 1|δk−1

1 }
)

(10)

3.2. Shiryaev Rule

The Shiryaev rule represents the optimal solution (under the
i.i.d. assumption) to the quickest detection problem where
the problem is formulated using a Bayesian approach.1 In
this approach, there exists a priori information regarding the
distribution of the change time.

The Shiryaev rule applies the Bayesian concept of declar-
ing that a change in distribution has occured when the a pos-
teriori probability of a change exceeds a given threshold. As-
sume that the a priori distribution of the change time kc is
given by a probability that change time is zero, and a geomet-
ric distribution of change times greater than zero:

Pr{kc = k} =
{
β0 kc = 0
(1− β0)ρ(1 − ρ)k−1 kc > 0

(11)

Applying Bayes rule, the a posteriori probability of a change
at time k > 0 is

βk =
[βk−1 + (1− βk−1)ρ]f0

[βk−1 + (1− βk−1)ρ]f0 + (1− βk−1)(1− ρ)f1
(12)

1The authors thank Dr. Alexander Tartakovsky of the Univ. of Southern
California for suggesting this approach.

Table 1. Multistatic Tracking Scenario Parameters
Parameter Value

Number of sensors, Ns 4
Number of scan cycles, n 4, 5
Scan cycle period, T 60 s

Markov transition probabilities, p, q 0.1/3, 0.1
Detection probabilities, PL

d , P
H
d 0.1, 0.9

False alarm density, λ 3.14× 10−8 m−2

Measurement noise covariance (243.2m)2

Kalman Filter process noise 10−4m2/s3

Validation gate probability,PG 99%

The Shiryaev stopping rule becomes [2]

gk = ln
βk

1− βk
(13)

= ln(ρ + egk−1 )− ln(1 − ρ) + ln
f0(δk|δk−1

1 )
f1(δk|δk−1

1 )
(14)

where with each scan gk is compared to a threshold h. If the
threshold is exceeded then the track is terminated.

A Bayesian test is appealing in that the a priori probabil-
ity of a distribution change time can be related to the actual
tracking problem. One estimates β0 based on the expected
numbers of confirmed true and false tracks using the perfor-
mance characteristics of the track confirmation module and
the expected density of true targets in the surveillance region.
Further, the geometric distribution of change time can be used
as a model for the probability that a confirmed track on a true
target diverges due either to a target maneuver or by being
drawn off the target by incorrectly associating noise measure-
ments to the track.

3.3. Model-Based Results

To compare the performance of the Page test, the Shiryaev test
and the K/N rule, Monte Carlo simulations were performed in
which detection sequences were generated with sensor mea-
surements given by the model from Section 2 and using the
parameters from Table 1. For each hypothesis H0 and H1,
104 simulations were performed. Simulations underH0 yield
the average false track life, called average detection delay
(ADD). Simulations under H1 yield the average true track
life, called average run length (ARL)2. Results are plotted for
each track termination test over a set of threshold values. The
Shiryaev test used β0 = 0.5 and ρ = 0.005. Fig. 2 presents
the track termination performance of each test.

Although asymptotically better than the K/N rule, the Page
test performedworst over the operating range likely to be used
in a track termination module of a track management system
(ADD of false tracks 4–15 scan cycles). The Shiryaev test

2ADD and ARL are the standard terminology used in change detection
literature
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Fig. 2. Comparison of the time to terminate false and true
tracks for various track termination tests.

performed the best of the three tests considered. This is likely
due to the information provided by the prior knowledge of the
distribution of change times used in the Shiryaev test. The
computational cost of the Shiryaev test is small and easily
computable as part of an overall track management system.

The sub-optimality of the Page test was not expected. Ex-
amination of the assumptions used in the optimality proofs of
the Page test show that the increments of the cumulative sum,
sk , must be i.i.d. [2, 9]. Fig. 3 plots the autocorrelation of
the CUSUM increments as a function of lag under H1 based
on data sequences obtained through simulation and shows a
significant correlation out to a lag of about 5 measurements.
Therefore since the CUSUM increments are not i.i.d., existing
optimality proofs of the Page test are not applicable.

4. CONCLUSIONS

In this paper we have examined the performance of track ter-
mination tests in a multistatic active sonar problem where
the sensor detection performance can be modeled as either
high Pd or low Pd with detection statistics based on a hidden
Markov model. The Page test is shown to be suboptimal to
a K/N test over a portion of its operating range and is due to
the HMM structure of the detection sequence underH1. The
Shiryaev test, a Bayesian formulation , performs dramatically
better than either the Page test or the K/N rule. The compu-
tational complexity of implementing a Shiryaev test for track
termination is low.
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