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ABSTRACT

This paper studies different optimization strategies for the
sensor placement in source localization by using time differ-
ences of arrival. It continues the works in [1, 2] and gives
answers to some open questions there. In particular, we dis-
cuss the relationship between maximum Fisher information
matrix, minimum Cramer-Rao bound, spherical codes, uni-
form angular arrays, and Platonic solids as well as their roles
in optimizing the sensor placement. Various new optimum
sensor array geometries are given.

Index Terms— Position measurement, delay estimation,
computational geometry

1. INTRODUCTION

Methods for navigation and localization are often based on
measuring the time delay (TD) of a signal caused by its travel
from a transmitter (TX) to a receiver (RX) or the time differ-
ence of arrival (TDOA), i.e. the difference of a pair of time de-
lays. In navigation, the transmitters have known positions and
the receiver has to be located. In localization, signals travel
from a single transmitter, whose location is to be estimated,
to several receivers at known positions. Table 1 summarizes
these four cases and lists some applications. Since the distinc-
tion between transmitter and receiver is irrelevant in this pa-
per, we treat navigation and localization in the same way and
speak simply of source localization. The term source refers
to the object to be located and the other objects at known po-
sitions are called sensors.

TD TDOA
Navigation GPS, LORAN, DECCA,
>1 TXs mobile positioning mobile positioning
1 RX

Localization active radar, sonar, passive radar, sonar,
1 TX and seismic and seismic,

>1 RXs microphone array

Table 1. Navigation and localization

In this paper, we focus on TDOA based localization. The
overall localization accuracy depends on three factors: a) the
accuracy of the TDOA estimates; b) the choice of the loca-
tion estimator; c) the sensor positioning relative to the source.

While much research effort has been spent on developing suit-
able TDOA and location estimators in the last decades (see
the references in [1, 2]), little was known about the impact of
the sensor positioning. Most results known in the literature
were obtained either numerically in terms of error contours
for some simple sensor arrays [3, 4, 5] or for a xed sensor
array geometry like hexagonal cells in wireless mobile posi-
tioning [6].
In [1, 2], the impact of the sensor placement to the lo-

calization accuracy has been analysed theoretically. Condi-
tions for optimum arrays minimizing the Cramer-Rao bound
(CRB) have been derived. Examples of such optimum arrays
are given. Unfortunately, several questions remain open, in
particular for three-dimensional sensor arrays:
• No optimum arrays could be found for an odd number
of sensors when using the full TDOA set.

• No optimum arrays are knownwhen using the spherical
TDOA set.

• Are there other good strategies for the sensor placement
than the minimization of the CRB?

• What is the relationship between these strategies?
This paper gives answers to the above questions.

2. TDOA BASED LOCALIZATION

M sensors at the positions q
i
∈ R

D (i = 1, . . . , M) measure
signals transmitted by a source located at p ∈ R

D. D = 2 or 3
is the space dimension. If the TDOA measurement errors are
Gaussian and uncorrelated with equal variance σ2, the CRB
for the source location vector p is [1]

J−1 = (vσ)2(GGT )−1 (1)

with

G = [g
ij

. . .](i,j)∈I , g
ij

= g
i
− g

j
, g

i
=

q
i
− p

‖q
i
− p‖ .

(2)
J is the Fisher information matrix (FIM). g

i
is a unit-length

column vector pointing from the source to sensor i. g
ij
is

the difference between two such direction vectors. The set I
contains the indexes of these sensor pairs (i, j) whose TDOA
estimates contribute to the source localization. The matrixG

contains all vectors g
ij
with (i, j) ∈ I. Depending on the

location estimator used, the full TDOA set

I0 = {(i, j)|1 ≤ j < i ≤ M} (3)
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containing all M(M − 1)/2 sensor pairs or the spherical
TDOA set

Is = {(1, k), . . . , (k − 1, k), (k + 1, k), . . . , (M, k)} (4)

involvingM−1 sensor pairs with the common reference sen-
sor k are frequently used in practice.

3. SENSOR PLACEMENT STRATEGIES FOR I0

Different strategies can be considered to optimize the local-
ization accuracy. The classical approach minimizes the trace
of the CRB:

min
{g

i
}

fCRB = tr[J−1] = (vσ)2tr[(GGT )−1]. (5)

Alternatively, we can also maximize the trace of the FIM:

max
{g

i
}

fFIM = tr[J] =
1

(vσ)2
tr[GGT ]. (6)

Is this a meaningful measure?
Since all sensor pairs are used in localization due to I =

I0 and all TDOA measurements are assumed to have equal
variance, all sensors are equally important for localization.
Intuitively, the sensors should be placed some how uniformly
on the unit circle or unit sphere. In the 2D case, uniform
angular arrays (UAA) with an equal angular separation of
2π/M between two neighbor sensors exist for any number
of sensors. In the 3D case, however, there exist only ve reg-
ular solids offering a perfect symmetry, the so called Platonic
solids: tetrahedron, octahedron, cube, icosahedron, and do-
decahedron [7]. How to place the sensors in this case ifM is
different from the number of vertices of the Platonic solids?
Yet another strategy to place the sensors “uniformly” on a

D-dimensional unit sphere is to maximize the minimum dis-
tance between any pair of sensors. In computational geome-
try, this is known as the spherical code (SC) problem:

max
{g

i
}

fSC = min
(i,j)∈I0

‖g
ij
‖. (7)

It is closely related to the spherical packing and kissing num-
ber problem [8]. Below we discuss the relationship between
these different strategies and the resulting sensor array geome-
tries.

3.1. The two-dimensional case

The rst approach in (5) has been studied in [1]. It results in
two conditions

g1 = 0 and ggT =
M

D
I (8)

with g = [g
1

. . . g
M

] and 1 = [1, . . . , 1]T . I is an iden-
tity matrix. The minimum value of fCRB is fCRB,min =

(vσ)2(D/M)2. It turns out that UAAs and even their cen-
tered superpositions satisfy these two conditions and are thus
CRB-optimum. But there also exist 2D optimum arrays other
than superposition of UAAs. One example is given in Table
2. It contains the direction vectors g

i
= [xi, yi]

T and the
corresponding angles αi.

Sensor i xi = cos(αi) yi = sin(αi) αi

1 1 0 0◦

2 3/5
√

1− x2
2 ≈ 53◦

3 (
√

57− 11)/20
√

1− x2
3 ≈ 100◦

4 (−√57− 11)/20
√

1− x2
4 ≈ 158◦

5 x4 −y4 ≈ −158◦

6 x3 −y3 ≈ −100◦

7 x2 −y2 ≈ −53◦

Table 2. An optimum 7-sensor array in the sense of (5)

Regarding the FIM criterion in (6), we can show

fFIM =
1

(vσ)2
tr[GGT ]

=
1

(vσ)2
(M2 − ‖g1‖2) ≥ M2

(vσ)2
(9)

by using Eq. (14) from [1]. fFIM is maximized if and only if
the rst condition in (8) is satis ed. Clearly, CRB-optimum
sensor arrays are also FIM-optimum, but not vice versa. On
the other hand, fFIM is not a meaningful accuracy measure
because it does not require the existence of the inverse FIM.
A 4-sensor array with g

1
= g

2
= −g

3
= −g

4
, for example,

maximizes fFIM, but the FIM J has rank one and no CRB
exists. The reason is the collapse of all direction vectors g

i
onto one dimension and no information is available for the
estimation of the perpendicular components of the source po-
sition vector. By using the CRB approach instead of FIM, we
explicitly force J to be a full-rank matrix to prevent g

i
from

collapsing onto a lower-dimensional subspace.
Concerning the spherical code approach in (7), it is obvi-

ous that 2D spherical codes are identical to UAAs. Therefore,
the relationship between different 2D optimization strategies
is

ASC = AUAA ⊂ AS−UAA ⊂ ACRB ⊂ AFIM. (10)

The termsASC,AUAA etc. denote the set of all array geome-
tries satisfying the SC, UAA, superposition of UAAs, CRB,
and FIM criterion, respectively. ⊂ is the symbol for subset.
As we see, the spherical code strategy always returns UAAs
and is more restrictive than the CRB approach.

3.2. The three-dimensional case

In 3D source localization, the CRB and FIM approach in (5)
and (6) result in the same optimality conditions in (8) as for
the 2D case. In other words, CRB-optimum sensor arrays are
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also FIM-optimum and the FIM approach does not guarantee
the existence of the CRB. Also Platonic solids as well as their
centered superpositions are CRB-optimum [1]. Since there
are only ve Platonic solids withM = 4, 6, 8, 12, 20 vertices
(sensors), it is an open question until now how to place the
sensors optimally in 3D for oddM .
We guess that no CRB-optimum solutions exist for odd

M in the 3D case. Instead, we propose to use spherical codes
for the sensor placement. Note that the general problem of
spherical codes has not been solved yet for D ≥ 3 and arbi-
trary values of M . Nevertheless, Sloane, Hardin, and Smith
have found spherical codes and putatively optimum spherical
packings forD = 3, 4, 5 andM ≤ 130 [9].
Table 3 compares the Platonic solides and spherical codes.

Tetrahedron, octahedron, and icosahedron are both Platonic
solids and spherical codes. Differences arise at M = 8 and
20. The cube with 6 squares faces is a Platonic solid but not
a spherical code. The spherical code forM = 8 is the square
antiprism. It arises from the cube by rotating its top square
base by 45◦ while keeping the bottom square base xed, thus
producing 8 triangular side faces. The distance between the
top and bottom base is reduced in such a way that the square
antiprism has equal edge length. This spherical code is neither
a Platonic solid nor CRB-optimum. Similarly, the dodecahe-
dron with 20 vertices (sensors) is a Platonic solid but not a
spherical code. The spherical code forM = 20 found in [9]
is neither a Platonic solid nor CRB-optimum.

M Solid
Platonic
solids

Spherical
codes

4 Tetrahedron Yes Yes
6 Octahedron Yes Yes
8 Cube Yes No

Square antiprism No Yes
12 Icosahedron Yes Yes
20 Dodecahedron Yes No

A code from [9] No Yes

Table 3. Platonic solides and spherical codes

LetAPS andAS−PS denote the sets of Platonic solids and
their centered superpositions. Fig. 1 illustrates the relation-
ship between different 3D sensor placement strategies. It is
similar to the 2D relationship in (10) except that ASC is no
longer identical to APS. The biggest advantage of spherical
codes over Platonic solids is that spherical codes are known
for M ≤ 130. We have compared the localization accu-
racy fCRB calculated for spherical codes against its minimum
value fCRB,min = (vσ)2(D/M)2:

fCRB(SC)

fCRB,min
< 1.04 for 4 ≤M ≤ 30. (11)

As we see, though most of the spherical codes are not CRB-
optimum in the sense of (5), they are very close to the lower
bound fCRB,min. Hence, for any practical number of sensors,

spherical codes can be used to design very good sensor array
geometries.

ASC

APS

AS−PS

ACRB

AFIM

Fig. 1. Relationship between different 3D sensor placement
strategies

4. SENSOR PLACEMENT STRATEGIES FOR IS

Note that the results derived in the previous section are only
valid under the assumption that all sensor pairs are involved in
the source localization. If we restrict to the spherical TDOA
set Is in (4) as requested by many spherical location estima-
tors, the matrixG in (2) changes. As a consequence, we have
to revise our sensor placement strategies.
Intuitively, there is a big difference between the full TDOA

set I0 and the spherical one Is. While all sensors in the for-
mer case are equally important, this is not true in the latter
case. The reference sensor k in (4) plays a special role be-
cause only TDOA measurements relative to it are used in lo-
calization. Thus we only expect a symmetry among all sen-
sors excluding the reference one. This means, sensor arrays
minimizing fCRB under Is will differ from UAAs and Pla-
tonic solids. Similarly, the spherical code approach treats all
sensors equally and will be sub-optimum for Is. Maximizing
fFIM in (6) is also not suitable because under Is

fFIM =
1

(vσ)2
tr[GGT ] =

1

(vσ)2

∑
i�=k

‖g
i
− g

k
‖2 (12)

will be maximum at g
i

= −g
k
for all i 	= k. The resulting

FIM has rank one. The only meaningful sensor placement
strategy is to minimize the trace of the CRB as in (5).
For uncorrelated TDOA errors, the results of extensive

numerical minimizations of fCRB under Is motivate the clus-
tering conjecture: Besides the reference sensor, the remaining
M−1 sensors buildD clusters. All sensors within one cluster
share with the same direction vector g

i
. The result is that each

cluster of sensors can be equivalently represented by a single
effective sensor having the same direction vector but with a
reduced variance of TDOA errors. The problem of designing
anM -sensor array simpli es to a (D + 1)-sensor problem.
Due to limited space, we only discuss the special case

M = LD + 1 in this paper. Then each of the D clusters
consists of L sensors and the effective TDOA error variance
per cluster is σ2/L. The question is how to place the D ef-
fective sensors relative to the reference sensor. This problem
has been addressed in [2] for the 2D case. The optimum di-
rection vectors for the reference sensor ( rst column) and the
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two effective sensors are

g =

[
1 cosα cosα
0 sin α − sinα

]
, α = 2 arcsin

√
2

3
≈ 109.5◦.

(13)
The minimum value of fCRB is

2D: fCRB,min = (vσ)2
27

16(M − 1)
. (14)

Belowwe derive the optimum 3D sensor placement. Again
the reference sensor is assumed to be located at g

1
= [1, 0, 0]T .

Since the remaining three effective sensors should be sym-
metric with respect to both the source and the reference sen-
sor as well as among themselves, they are equally spaced on
the thick circle in Fig. 2 which is the intersection of the unit
sphere with a cone oriented along the x-axis and having its
vertex at g

1
. Let g

2
be on the xy-plane. The direction vectors

g
i
(1 ≤ i ≤ 4) are then

g =

⎡
⎣

1 cosα cosα cosα
0 sin α − 1

2 sinα − 1
2 sin α

0 0
√

3
2 sinα −

√
3

2 sin α

⎤
⎦ . (15)

After some straightforward calculations, we obtain

fCRB = (vσ)2
3t + 1

12t2(1− t)
, t = sin2(α/2). (16)

Aminimization of fCRB overα returnsα = 2 arcsin(3−1/4) ≈
98.9◦. The minimum value is

3D: fCRB,min = (vσ)2
3(3 + 2

√
3)

4(M − 1)
. (17)

Note that such a sensor array is realizable. Though the
sensors within one cluster share with the same direction vec-
tor, they can be placed at different distances to the source.
The reason for the clustering phenomenon is a xed reference
sensor. Only TDOA measurements relative to it are used in
localization. Hence we do not care about g

ij
= 0 within

one sensor cluster. This is impossible when we use the full
TDOA set I0. Two identical direction vectors with g

ij
= 0

would imply zero contribution to the source localization.
Finally, it is interesting to compare the spherical codes

with the CRB-optimum ones. We have calculated the ratio
between fCRB for spherical codes and its minimum in (14)
and (17):

2D:
fCRB(SC)

fCRB,min
< 1.6, 3 ≤ M = 1 + 2l ≤ 130,

3D:
fCRB(SC)

fCRB,min
< 1.4, 4 ≤ M = 1 + 3l ≤ 30. (18)

There is a considerable but bounded performance loss for
spherical codes against the CRB-optimum under Is.

x

y
z

0

g
1

reference
sensor

g
2

g
3

g
4

α

Fig. 2. Optimum geometry of a 4-sensor array under Is

5. CONCLUSION

In this paper, we compared different sensor placement strate-
gies for TDOA based localization. We studied the new spher-
ical code approach. It returns nearly CRB-optimum solutions
for the open problem “3D, full set I0, and odd number of sen-
sors”. We also derived a new CRB-optimum solution for 3D
sensor placement under Is. Nevertheless, this study has to be
adapted to a more realistic (yet unknown) covariance matrix
of the TDOA estimators in the future.
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