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ABSTRACT 
 
In this paper, we present a direction of arrival (DOA) tracking 
scheme involving a subspace tracking algorithm and a Kalman 
filter. The proposed subspace tracking algorithm is based on an 
interpretation of the signal subspace as the solution of a 
minimization of a constrained projection approximation task. We 
show that we can apply the matrix inversion lemma to solve this 
problem recursively. Proposed algorithm avoids 
orthonormalization process after each update for post-processing 
algorithms which need orthonormal basis of the signal subspace. 
The DOA’s are obtained via a Newton-type method initialized with 
the DOA’s predicted by the Kalman filter. The tracking capability 
of the proposed algorithm is verified by computer simulations in a 
scenario involving targets with crossing trajectories.  
 

Index Terms— subspace tracking, Kalman filter, direction of 
arrival (DOA).
 

1. INTRODUCTION 
 
Subspace-based methods for estimating the direction of arrival 
(DOA) of the signal impinging on an array of sensors have drawn 
considerable interest over recent years. Based on the 
eigendecomposition of the covariance matrix of the array output, 
they offer high resolution and give accurate estimates [1]. 
However, in the applications that the number of sources is very 
large, the computational burden of these methods may be 
unacceptably high. 

In order to overcome this difficulty, a large number of 
approaches have been introduced for fast subspace tracking in the 
context of adaptive signal processing. Most of these techniques can 
be grouped into three families. In the first one, classical batch 
methods for EVD/SVD have been modified to fit adaptive 
processing [2]. In the second family, variations and extensions of 
Bunch’s rank-one updating algorithm [3] have been proposed. The 
third class of algorithms considers the EVD/SVD as a constrained 
or unconstrained optimization problem, for which the introduction 
of a projection approximation hypothesis leads to fast subspace 
tracking methods (see, e.g., the PAST [4] and NIC [5] algorithms).  

Some of these algorithms add orthonormalization step to 
achieve orthonormal eigenvectors [6]. The necessity of 
orthonormalization depends on the post-processing method which 
uses the signal subspace estimate to extract the desired signal 
information. If we are using MUSIC or minimum-norm method for 

calculating DOA’s from the signal subspace, for which 
orthonormal basis of the signal subspace is required, 
orthonormalization step is crucial. 
    In this paper, we present an algorithm for tracking the signal 
subspace spanned by the eigenvectors corresponding to the r 
largest eigenvalues, where r is the dimension of signal subspace. It 
relies on an interpretation of the signal subspace as the solution of 
a constrained optimization problem. We call our approach as 
constrained projection approximation subspace tracking (CPAST). 
This algorithm avoids orthonormalization step. We show that we 
can apply the recursive technique to solve this problem. 
    Here we propose a subspace-based DOA tracking scheme that 
its implementation involves three functional structures: 

1) adaptive subspace estimator; 
2) subspace-based DOA estimator; 
3) Kalman filter.   

     From the subspace estimate, obtained through the proposed 
CPAST algorithm, we attain the DOA’s by minimizing a one-
dimensional (1-D) cost function via a Newton-type method. These 
DOA estimates are treated as measurements and smoothed by the 
Kalman filter.  
 

2. PROBLEM FORMULATION 
 

Consider r incident narrowband point sources which impinge on an 
array of n sensors (r<n). These signal sources are assumed to be 
emitted by sources moving with arbitrary trajectories. At time t, the 

sample vector 1)( nCtx  of the sensor outputs can be written 
according to the model:                      

)()())(()( tttt nsAx                                                      (1) 

where 1rCs  is the vector of the complex envelopes of the 

target signals, 1nCn  is an additive noise vector, 
rn

r Cttt ))](()),...,(([))(( 1 aaA  is the matrix of the steering 
vectors ))(( tka , and rktk ,...,1 ),(  is the DOA of the k’th target 
measured with respect to the broadside of the array. The problem 
of tracking the DOA’s can be formulated as the problem of 
estimating )(tk ’s recursively. In the subspace-based methods, the 
DOA’s are determined as the minimizing arguments of the 
following cost function: 
         )())(()( aWWIa H

n
Hf                                 (2) 

where W is an orthogonal basis for the signal subspace and In is the 
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identity matrix of dimension n. Classically, W is obtained via an 
eigendecomposition of the covariance matrix of the received 
sensors’ outputs. This involves a prohibitive computational burden, 
which limits its use for tracking. To overcome this problem, we 
suggest the CPAST algorithm to estimate W recursively. 
 

3. THE CPAST METHOD 
 

Let nC  x  be a complex valued random vector process with the 

autocorrelation matrix HE xxC which is assumed to be 
positive definite. We consider the following minimization problem: 

   
2

)(    minimize xWWxW
W

HEJ                            (3) 

where W is an n×r (r n) full rank matrix. It can be shown that 
J(W) has a global minimum and the columns of the solution of the 
above problem are orthonormal and span the signal subspace [4]. 
Thus, the use of an iterative algorithm to minimize J(W) will 
always converge to an orthonormal basis of the signal subspace 
without any orthonormalization operation during the iteration. 
Although the capability of gradient based subspace update 
approaches is clear to us, it is not the aim of this paper to use these 
approaches. Instead, we replace the expectation in (3) with an 
exponentially weighted sum as follows: 

2

1
)()()()())((     minimize

t

i

Hit ittitJ xWWxW
W

           (4) 

and we will try to solve this problem recursively. All sample 
vectors available in the time interval 1 i t are involved in 
estimating the signal subspace at the time instant t. The use of the 
forgetting factor 0< 1 is intended to ensure that data in the distant 
past are downweighted. This is useful when the system operates in 
a nonstationary environment. J(W(t)) is a fourth-order function of 
elements of W(t). The key issue of the projection approximation 
subspace tracking (PAST) approach [4], is to approximate 
WH(t)x(i) in (4), the unknown projection of x(i) onto the columns 
of W(t), by the expression y(i)=WH(i-1)x(i), which can be 
calculated for 1 i t at the time instant t.  This results in a modified 
cost function: 

            
2

1
)()()())((

t

i

it ititJ yWxW                                  (5) 

which is quadratic in the elements of W(t). This results in the 
following minimization problem: 

            
2

1
)()()())((   minimize

t

i

it iytixtJ WW
W

         (6) 

 
The solution to this problem (the PAST solution) is as follows [4]: 
           1))()(()( ttt yyxy CCW                                                 (7) 

where  

            )()()1()()()(
1

tttiit H
t

i

Hit yxCyxC xyxy
               (8)                  

           )()()1()()()(
1

tttiit H
t

i

Hit yyCyyC yyyy
               (9) 

We note that the PAST algorithm is derived by minimizing the 
modified cost function in (5) instead of the original one in (3). 

Hence, the columns of W(t) are not exactly  orthonormal. The 
deviation from the orthonormality depends on the signal to noise 
ratio (SNR) and the forgetting factor . This lack of orthonormality 
affects seriously the performance of post-processing algorithms 
which are dependent on orthonormality of the basis.  To overcome 
this problem, we define the following constrained optimization 
problem: 

      

r
H

t

i

it

ttosubject  t

ititJ

IWW

yWxW
W

)()(                       

  )()()())((   minimize
2

1
               (10) 

 
where Ir is the r×r identity matrix and it is clear that the constraint 
in (10) guarantees the orthonormality. To solve this constrained 
problem we use Lagrange multipliers method. So, after expanding 
the expression for ))(( tJ W , we can replace (10) with the 
following problem: 

2

1

1

)()())()()()(( 

))()()((2)()(   minimize

Fr
HHH

t

i

it

H
t

i

it

ttttiitr

tiitrtrh

IWWWWyy

WxyCW
W        (11) 

 

where tr(C) is the trace of the matrix C, F.  denotes the 

Frobenius norm, and  is the Lagrange multiplier. By letting 
0h , where  is the gradient operator with respect to W, we 

have: 

      

0)]()()(2)(2[

)()()()()(
1 1

tWtWtWtW

yytWyx

H

t

i

t

i

HitHit titi
                  (12) 

 
If we obtain W from aforementioned equation and use it in 

r
H IWW  , after some manipulations we obtain:  

       
t

i

t

i

HitHit

t

i

H
r

Hit

iiii

ttii

1 1

2
1

1

)]()()()([

)()(22)()(

yxxy

WWIyy

                  (13) 

where (.)1/2 denotes the square root of a matrix. 
      Now, using (13), we can remove  from equation (12) and 
abtain the following solution: 

        2
1

))()()(()( tttt H
xyxyxy CCCW                                       (14) 

This constrained projection approximation subspace tracking 
(CPAST)    algorithm   guarantees   the   orthonormality   of   the 
columns of W(t). The general form of solution of CPAST 
algorithm is similar to PAST except its square root.  

 
4. ADAPTIVE SUBSPACE TRACKING 

 
Subspace tracking methods have applications in numerous 
domains, including the fields of adaptive filtering, source 
localization,    and   parameter   estimation.   In   many   of      these 
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Table 1. The CPAST algorithm for tracking 
 the signal subspace 
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applications we have a continuous stream of data. Thus, 
developing adaptive algorithms is very useful for these 
applications. An efficient and numerically robust recursive solution 
for (10) can be obtained by using the matrix inversion lemma to 
compute the inverse of )()( tt xy

H
xy CC  in (14). 

     To do so, we apply the inversion lemma to equation (14) after 
replacing )(txyC  from (8) in it. It can be shown that after using 

inversion lemma for two times and doing some manipulations, we 
can obtain a recursive solution. Table 1 summarizes this recursive 
CPAST algorithm for tracking the signal subspace. Because of the 
limited space, we have omitted the derivation of this recursive 
algorithm. 
    Appropriate initial values should be chosen for P(0) and W(0). 
P(0) must be a Hermitian positive definite matrix and W(0) should 
contain r orthonormal vectors. The choice of these initial values 
affects the transient behavior but not the steady state   behavior of 
the algorithm. The simplest way is to set P(0) to the r×r identity 
matrix and the columns of W(0) to the first r columns of the  n×n  
identity  matrix.  
 

5. THE DOA TRACKING ALGORITHM 
 

The proposed algorithm utilizes a Newton-type (N-t) method 
which is presented in [8], to track the minimum of )(f  obtained 
by using CPAST algorithm. This method is an adaptive version of 
the MUSIC DOA estimation method. This N-t method uses 

predicted DOA’s given by a Kalman filter in order to derive its 
new DOA estimates.  
      Let us denote T

kkkk tttt )](  )(  )([)(y  as the state vector 

containing the DOA’s )(tk , the bearing velocities )(tk , and 

the acceleration values )(tk at time t. We model the dynamics 
and the measurement equations of the kth target by [9]: 

        
(16)                                                      ),()()(ˆ
(15)                                                )()()1(

tvtt

ttt

kkk

kkk

hy

wFyy
 

where 

100
10

2
1

 T

T
T

F ,  T is sampling period, h=[1 0 0] and 

wk(t) is the noise process assumed to be normally distributed with 
zero mean and covariance matrix Qk(t), and vk(t) is a zero mean 
white Gaussian noise with variance 2

vk(t).  The proposed tracking 
algorithm can then be summarized in the following steps: 
 
1) From the existing estimates )|(ˆ ttky , obtain a prediction of the 

state vectors )|1(ˆ ttky  and their covariance matrices 
)|1( ttkP  by the equations: 

      

(18)                                             )()|()|1(

(17)                                                               )|(ˆ)|1(ˆ

ttttt

tttt

k
T

kk

kk

QFFPP

yFy
 

 
2) Apply the adaptive CPAST algorithm presented in table 1 to 

update the signal subspace W(t+1). 
 
3) Using the predicted DOA’s and W(t+1), obtain an estimate of 

the DOA’s via the N-t algorithm: 

       
)()1()(

)]()1()(Re[)|1(ˆ)1(ˆ
dtd

atd
ttt H

H

kk              (19) 

where )1()1()1( ttt H
n WWI , )|1(ˆ ttk , 

ddad /)()( ,   and Re[.] stands for the real part. 
 

4) Estimate the innovation errors as in the following form: 

       )|1(ˆ)1(ˆ)1( tttt kkk                              (20)                       
From the dynamic model and the measurement equations (17) 
and (18) and from the innovation errors (20), we have: 

       
)|1(])1([)1|1(

)1()1()|1(ˆ)1|1(ˆ

3 tthttt
ttttytty

kkk

kkkk

PGIP
G

           (21)  

        
       where I3 is the identity matrix of dimension 3 and the matrix   
       Gk(t+1) is the Kalman gain given by: 
       )]1()|1([)|1()1( 12 thtthhttt vk

T
k

T
kk PPG  (22)                         

Note that )1|1(ˆ ttk  is the final output. 
 

6. SIMULATION RESULTS 
 

We   consider   three   targets   emitting  uncorrelated  narrow-band  
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Figure 1. Result of DOA tracking with three crossing targets 

   
 
signals that impinge on a uniform linear array of 17 sensors 
separated by half wavelength. The targets have been tracked over 
an interval of 100 seconds with T=0.2 seconds. The targets have 
individual SNRs of 10 dB. To initialize the Kalman filter, we 
obtained DOA estimate )0(ˆ

k  for each target from an initial block 
of data. Then, with these estimates, we initialized the state vector 
by )0(ˆ)0|0( kk , 0)0|0(k  and 0)0|0(k . The 
corresponding covariance matrix )0|0(kP  and the covariance 

matrix of the noise process kQ  are, respectively, given by: 

  

(24)                                                            
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with 1.0)0(2
vk  and 001.02

wk . 
    To demonstrate the capability of proposed algorithm in tracking 
targets in non-stationary environment, we assume two sources that 
change their locations uniformly from (-25o, 25o) to (25o, -25o), and 
one source is constantly in 0o. Figure 1 shows the result of 
applying the DOA tracking algorithm to the data of the mentioned 
scenario. From the figure, it turns out that the proposed algorithm 
can track the trajectories properly.  
To evaluate the performance of the subspace tracking part of this 
algorithm, we compare the root mean square error (RMSE) of the 
proposed CPAST algorithm with two subspace-based tracking 
algorithms PAST [4] and approximated power iteration (API) [7].  
This performance comparison is obtained using 100 simulation 
runs of the aforementioned scenario. The results are shown in 
figure 2.  
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Figure 2. Root mean square error 

 
 

7. CONCLUSION 
 
In this paper, we introduced an interpretation of the   signal   
subspace   as   the   solution   of   a constrained minimization 
problem. We derived a recursive solution for adaptive 
implementation of this solution. Then we used a DOA tracking 
algorithm based on the subspace tracking algorithm, called 
CPAST, Kalman filter and an N-t method. This algorithm 
overcomes the difficulty of crossing over sources. Simulations 
show excellent performance of this algorithm in a non-stationary 
environment. 
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