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ABSTRACT

This paper considers localization of a source or a sensor from dis-
tance measurements. We argue that linear algorithms proposed for
this purpose are susceptible to poor noise performance. Instead
given a set of sensors/anchors of known positions and measured
distances of the source/sensor to be localized from them we pro-
pose a potentially nonconvex weighted cost function whose global
minimum estimates the location of the source/sensor one seeks.
The contribution of this paper is to provide nontrivial ellipsoidal
and polytopic regions surrounding these sensors/anchors of known
positions, such that if the object to be localized is in this region lo-
calization occurs by globally convergent gradient descent. This
has implication to the deployment of sensors/anchors to achieve a
desired level of geographical coverage.
Key words: Localization, Sensors, Global Convergence, Opti-
mization, Gradient Descent

1. INTRODUCTION

Over the last few years, the problem of source/sensor localiza-
tion has assumed increasing signi cance (see [1] for application
scope). Speci cally source localization refers to a set of sensors
estimating the precise location of a source using information re-
lated to their relative position to the source. In sensor localization
a sensor estimates its own position using similar information rela-
tive to several nodes of known positions called anchors. This in-
formation can be distance, bearing, power level (indirectly related
to distance) and time difference of arrival (TDOA). In this paper,
we focus on distances only. In abstract terms our goal is the
following. Given known 2 or 3- dimensional vectors x1, · · · , xN

(N > 2 and N > 3 in 2 and 3 dimensions respectively) and an
unknown vector y∗, estimate the value of y∗, from the measured
distances di = ‖y∗ − xi‖. In the source localization problem, y∗
represents the position of the unknown source, and the xi the po-
sitions of the sensors seeking to estimate its location. In the sensor
localization problem, the xi are the positions of the anchors, and
y∗ the position of the sensor estimating its own position.

Such distances can be estimated through various means. For
example if a source emits a signal, the signal intensity and the char-
acteristics of the medium provides a distance estimate. In this case

Fidan and Anderson are with Australian National University and Na-
tional ICT Australia Ltd, Locked Bag 8001, Canberra ACT 2601 Aus-
tralia, Baris.Fidan and Brian.Anderson@nicta.com.au. Dasgupta is with
the Dept. of ECE, University of Iowa, Iowa City, IA 52242, USA, das-
gupta@engineering.uiowa.edu. Supported by NSF grants ECS-0225530
and ECS-0622017, and by National ICT Australia, which is funded by
the Australian Government’s Department of Communications, Information
Tehcnology and the Arts and the Australian Research Council through the
Backing Australia’s Ability initiative and the ICT Centre of Excellence
Program.

withA the source signal strength, and η the power loss coef cient,
the signal strength at a distance d from the source is given by

s = A/dη. (1.1)

Thus, A, s and η provide d. Alternatively, a sensor may transmit
signals of its own, and estimate the distance by measuring the time
it takes for this signal re ected off the target to return.

In 2-dimensions, localization from distance measurements gener-
ically requires that distances of y∗ from at least three non-collinearly
situated xi be available. To be precise, with just two distances, the
position can be determined to within a binary ambiguity. Occa-
sionally, a priori information may be available which will resolve
that ambiguity. Otherwise, a third distance is needed. In three
dimensions, one generically needs at least four non-coplanar xi.

As explained in section 2 if the di uniquely specify y∗, y∗ can
be estimated using linear algorithms, [2],[3]. In practice, as also
explained in section 2, such a linear algorithm with certain geome-
tries may deliver highly inaccurate estimates with noisy measure-
ments of the distances, even when the noise is small. On the other
hand, several papers adopt a nonlinear estimation approach, [4]-
[8]. Many of these directly work with (1.1), with known A and η.
Thus rather than assuming that the di are directly available, they
work with the received signal strength at several sensors and for-
mulate a minimization problem to obtain y∗. Such minimization
problems are inevitably non-convex and manifested with locally
attractive false optima. Among these, [5]-[6] conduct searches in
two dimensions, that as noted in [7] are sensitive to spurious sta-
tionary points, while [7] provides search alternatives involving the
so called Projection on Convex Sets (POCS) approach also in two
dimensions, as does [8] though in a framework that is more gen-
eral. Barring [7], none attempts to characterize conditions under
which convergence obtains. The POCS approach of [7], however,
has the unique solution of y∗ in the noise free case iff y∗ is in the
convex hull of xi (i.e Co(x1, · · · , xN )).

In this paper, we work directly with the di and with certain
weights λi > 0, seeking to obtain y∗ as the y minimizing

J(y) = 0.5

N∑
i=1

λi

(‖xi − y‖2 − d2
i

)2
, (1.2)

We show in section 2 that this is in general a non-convex problem.
The goal of this paper is to provide conditions on xi and y∗ under
which the gradient descent minimization of (1.2) is globally con-
vergent. Such conditions have important practical import as they
provide a benchmark of how to deploy sensors (anchors) to cover
a geographical region to localize sources (sensors) potentially lo-
cated throughout the region. We show that these regions extend
beyond Co(x1, · · · , xN ).

Section 2 provides more background and examples showing
the nonconvexity of (1.2). In section 3, given λi > 0 and xi,
we characterize a nontrivial ellipsoidal set members of which are

II  10811424407281/07/$20.00 ©2007 IEEE ICASSP 2007



guaranteed to be localized through the gradient descent minimiza-
tion of (1.2). In section 4 given xi, we quantify a nontrivial poly-
topic set for which there exist λi > 0 such that members of this
set can be similarly localized. While these analyses are determin-
istic, section 5 demonstrates the performance of gradient descent
minimization under noisy distance measurements. It is after all an
important aim of this paper to present an algorithm initially de-
rived to cope with noiseless measurements, but able to cope with
noisy ones in a graceful manner. Section 6 is the conclusion.

2. BACKGROUND AND PRELIMINARIES

In this section we discuss linear algorithms, key past results and
examples demonstrating the convexity of (1.2).

2.1. Linear algorithms
We discuss now the practical rami cations of linear localization
algorithms. Consider three non-collinear xi in 2-dimesions and
and equations

‖xi − y∗‖2 = d2
i , for i ∈ {1, 2, 3}. (2.1)

Subtracting the rst equation from the remaining two one obtains,

2

[
(x1 − x2)

T

(x1 − x3)
T

]
y∗ =

[ ‖x1‖2 − ‖x2‖2 + d2
2 − d2

1

‖x1‖2 − ‖x3‖2 + d2
3 − d2

1

]
.

(2.2)
For non-collinear xi, det([(x1−x2), (x1−x3)]

T ) �= 0, i.e. y∗ can
be solved uniquely. But, the solution is invariant if for any α the
d2

i are replaced by d2
i + α, suggesting and veri ed by example in

[9], that such linear algorithms may have poor noise performance.

2.2. Nonlinear algorithms
In [5],[6], the model of (1.1) is used to obtain y∗ by optimizing
(through an iterative serach procedure as opposed to analytical cal-
culation) a cost function related to (1.1). As noted in [7] conver-
gence properties are impaired by spurious optima, conditions for
whose absence have not been obtained.

A reformulation is used in [7] to apply the POCS approach.
This results in a problem whose unique solution (given noiseless
measurements of the relevant distances) equals the desired y∗ iff
y∗ is in the convex hull of the xi, even if the xi are non-collinear
and regardless of their number. Related POCS algorithms are in
[8]. Simulations provided in [8] show that their algorithms may
converge even if y∗ is not in the convex hull of the xi, without
providing conditions under which such convergence can occur.

2.3. Preliminaries of (1.2)
Our standing assumption below ensures that J(y) = 0 iff y = y∗.

Assumption 2.1 In two dimensions the xi, i ∈ {1, · · · , N}, are
non-collinear. In three dimensions they are non-coplanar.

We will seek to nd conditions under which

∂J(y)/∂y =
N∑

i=1

λi(‖y − xi‖2 − d2
i )(y − xi) = 0 iff y = y∗.

(2.3)
Under (2.3), for every ‖y[0]‖ ≤ C, there exists μ∗ dependent

on C such that for all μ ≤ μ∗, the gradient descent algorithm

y[k + 1] = y[k]− μ ∂J(y)/∂y|y=y[k] (2.4)

is globally convergent. Even if (2.3) fails, however, practical con-
vergence will still occur if false stationary points are locally un-
stable. Thus consider the 2-dimensional case where λi = 1,
x1 = [−1, 0]T , x2 = [0,−1]T , x3 = 0, and y∗ = [−1,−1]T

depicted in g. 1(a). In this case d2
1 = d2

2 = 1 and d2
3 = 2.

Some routine algebra shows that ∂J/∂y = 0 has two solutions:
y = y∗ and the spurious value y = 0. In (2.4), with y = [y1, y2]

T ,
y1[k + 1]− y1[k] equals

−μ
[
2y2

1 [k] + (y1[k] + y2[k])2 + 3y1[k](y2
1 [k] + y2

2 [k])
]
.

If y1[k] < 0, with y[k] close to the origin, y1[k + 1] < y1[k], ex-
hibiting the local instability of y = 0. Thus in practical terms, the
local instability of this stationary point will make it unattainable,
as the slightest noise will drive the solution off it.
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Fig. 1. (a) False unstable stationary point at x3. (b) False stable
stationary point at y

On the other hand, there are examples were the spurious sta-
tionary points are locally stable. This occurs, [10] if the Hessian

∂

∂y
[

N∑
i=1

λi(‖y − xi‖2 − d2
i )(y − xi)] (2.5)

is positive de nite at such a stationary point. To this end choose
λi = 1, x1 = [1, 1]T , x2 = [1, 3]T , x3 = [3, 1]T , and the true
y∗ = 0 depicted in g. 1(b). In this case d2

3 = d2
2 = 10 and

d2
1 = 2. It turns out y = [3, 3]T is a spurious stationary point.
Evaluated at this point one can verify that (2.5) is positive de nite.
It is thus important to consider conditions under which (2.3) holds.

3. GUARANTEED CONVERGENCE FOR GIVEN
WEIGHTS

We provide conditions under which for xed λi > 0 (2.3) holds.
Call the N -vector uN = [1, · · · 1]T , X = [[x1, · · · , xN ]T , uN ]T ,
and ȳ = [y∗T , 1]T . We prove an initial result.

Lemma 3.1 Consider xi in 2 or 3-dimensions with assumption
2.1 holding. Then for every y∗ there exist scalar βi obeying

N∑
i=1

βi = 1 (3.1)

for which
N∑

i=1

βixi = y∗. (3.2)

Proof: (3.1),(3.2) is equivalent toXβ = ȳ, where β = [β1, · · · , βN ]T .
Thus, we need only to show that rank[X ] = dim(ȳ). If the con-
trary were true then there exists a nonzero θ = [θ̄T , θn+1]

T ∈
�n+1 (where θn+1 ∈ � and n = dim(xi)) for which θTX = 0,
i.e. θ̄T xi = θn+1 for all i ∈ {1, · · · , N}. Noting that θ �= 0,
this implies that in 2-dimensions the xi are collinear and in 3-
dimensions co-planar, violating assumption 2.1.
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If βi ≥ 0 for all i, then y∗ ∈ Co{x1, · · · , xN}. Further,
for N > 3 in 2-dimensions and N > 4 in 3-dimensions, the βi

that obey (3.1), (3.2) are nonunique. We now develop a condition
involving βi, and λi, to ensure (2.3). De ne x̃i = xi − y∗ and
ỹ = y − y∗. Then (2.3) holds iff

N∑
i=1

λi(‖ỹ − x̃i‖2 − ‖x̃i‖2)(ỹ − x̃i) = 0⇔ ỹ = 0. (3.3)

Further because of (3.1), (3.2),

N∑
i=1

βix̃i = 0. (3.4)

With ei = ỹ − x̃i, E = [e1, · · · , eN ], Λ = diag {λ1, · · · , λN},
∂J/∂y becomes:

N∑
i=1

λi(‖ỹ − x̃i‖2 − ‖x̃i‖2)(ỹ − x̃i) = 2EΛET ỹ −EΛuN ỹT ỹ.

Because of (3.4), and (3.1) Eβ = ỹ. Thus (2.3) holds iff

2EΛET Eβ = EΛuNβT EET β ⇔ Eβ = 0

i.e. with P = 2Λ− ΛuNβT ,

2EPET Eβ = 0⇔ Eβ = 0, (3.5)

Then we provide a suf cient condition on P that ensures (2.3).

Lemma 3.2 Consider y∗, x1, · · ·xN with assumption 2.1 in place.
Suppose β = [β1, · · · , βN ]T , obeys (3.1) and (3.2), λi > 0, and
P is as above. Then (2.3) holds if P + P T > 0.

Proof: We need to show that (3.5) is true, if P + P T > 0.
Now, EPET Eβ = 0 implies that βT ET EPET Eβ = 0. As
P + P T > 0, one has EET β = 0, i.e βT EET β = ỹT ỹ = 0.

This is only a suf cient condition. Even if P + P T is not positive
de nite, (2.3) will hold unless some ỹ �= 0 is in the null space
of EPET which itself depends on ỹ. Yet we show below that
it does quantify a nontrivial domain where (2.3) holds. First an
intermediate lemma.

Lemma 3.3 Consider two N × 1 vectors a, b. Then 4I − abT −
baT > 0 iff

√
(bT b)(aT a) < 4− aT b.

Proof: The characteristic polynomial of abT +baT is sN−2(s2−
2(bT a)s+(aT b)2− (aT a)(bT b). Thus the smallest eigenvalue of
4I − abT − baT is 4− bT a−√

(aT a)(bT b), whence the result.

Lemmas 3.3 and 3.2, (3.1) and the fact below prove Theorem 3.1.

P+P T > 0⇔ 4I−Λ1/2uNβT Λ−1/2−
(
Λ1/2uNβT Λ−1/2

)T

> 0.

Theorem 3.1 Consider in 2 or 3-dimensions, xi, obeying assump-
tion 2.1, λi > 0, Λ as above, any y∗ and β obeying (3.1) and (3.2).
Then (2.3) holds if:

(βT Λ−1β)(uT
NΛuN ) =

(
N∑

i=1

β2
i /λi

)(
N∑

i=1

λi

)
< 9. (3.6)

This is in fact a necessary and suf cient condition for P +P T

to be positive de nite, though from the argument above only a
suf cient condition for (2.3).

For unity weights, i.e. λi = 1, and N < 9, Co(x1, · · · , xN )
is a proper subset of this set. Indeed if y∗ ∈ Co(x1, · · · , xN )

then in (3.1) and (3.2) βi ≥ 0, and
√

βT β ≤ βT uN = 1. Thus
as Λ = I , (βT Λ−1β)(uT

NΛuN ) ≤ 8. Recalling that in 2 and 3-
dimensions it suf ces to haveN = 3 andN = 4, respectively, for
given xi satisfying assumption 2.1, the set characterized by The-
orem 3.1 can be chosen to be signi cantly larger than their con-
vex hull. This means that in the sensor (resp. source) localization
problem, just a few anchors (resp. sensors) will achieve substantial
geographical coverage. We now show that the set of y∗ satisfying
(3.1),(3.2) and (3.6) is an ellipsoid.

Theorem 3.2 For every λi > 0, and xi, obeying assumption 2.1,
the set of y∗ for which scalar βi satisfying (3.1),(3.2) and (3.6)
exist, is a nonempty ellipsoid, determined entirely by xi and λi.

Proof: Note, (3.6) holds for some choice of λi iff it holds with any
δ > 0, for δλi. Thus without loss of generality choose λi so that
uT

NΛuN = 1. Then βi = λi, satis es (3.1) and (3.6). Thus, the set
is nonempty. Recall (3.1) and (3.2) combine to give Xβ = ȳ. As-
sumption 2.1 together with an argument similar to that in the proof
of Lemma 3.1 ensures that rank of X is the same as the dimension
of ȳ. Then β satisfying (3.1) and (3.2) is completely characterized
by β = G[(F ȳ)T , zT ]T where F and G are nonsingular matrices
determined entirely by xi and z is any suitably dimensioned vec-
tor. Thus with A a positive de nite symmetric matrix, determined
by Λ, and the xi, (3.6) becomes

min
z

(
[ȳT F T , zT ]A[ȳT F T T, zT ]T

)
< 9. (3.7)

Partition A as
A =

[
A11 AT

21

A21 A22

]
.

Observe B = [A11 − AT
21A

−1
22 A21] > 0. It is readily seen that

(3.7) becomes ȳT F T BFȳ < 9. Thus the set of ȳ = [y∗T , 1]T is
an ellipsoid. Then as long as the the set of y∗ is non empty it is an
elliposid determined entirely by xi and λi.

4. CHOOSING THEWEIGHTS

In this section we quantify the set of y∗ for which there exist λi

so that (2.3) holds. Indeed suppose y∗ is much closer to x1 than
the other xi. Intuition suggests that one should emphasize d1 more
than the other di, by choosing λ1 to be relatively larger. The results
of this section should be viewed in this context. We rst present
the following Theorem that follows from (3.6) and the Cauchy-
Schwarz inequality.

Theorem 4.1 Under the hypotheses of Theorem 3.1 there exist
λi > 0 for which P + P T > 0 iff

N∑
i=1

|βi| < 3. (4.1)

Further under (4.1)
λi = |βi| (4.2)

always guarantee P + P T > 0.
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This set is polytopic in β and because of (3.2) also in y∗. Further
as under (3.1), βi ≥ 0 for all i, guarantees (4.1), Co{x1, · · · , xN}
is a proper subset of thus polytope. As with Theorem 3.2 this
polytope can be determined entirely from the xi. Consider the
2-dimensional example depicted in gure 2 where 1,2,3 represent
the xi locations. Choose β1 = 0. Then y∗ satisfying (3.1) and
(4.1) are in (4,5). Here [2,3] is a subset of (4,5), and the lengths
of the segments joining 4 and 2, 3 and 5 and 2 and 3 are all equal.
By similarly extending [1,3] and [1,2], one could come up with
a hexagon 6,7,4,8,9,5 that de nes the desired polytope. It is also

9
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Fig. 2. Illustration of the polytope suggested by Theorem 4.1

interesting to note that if y∗ is very close to x1 then β1 is much
larger than the remaining βi and the choice in (4.2) forces λ1 to be
much larger than the remaining λi. Yet (4.2) is not the only choice
one can make. The more one enters the interior of this polygon,
the more the choices of λi, and indeed the larger the region where
a common set of λi guarantees (2.3). This in particular has impli-
cations to the positioning of the xi. Thus, with a potentially rough
estimate of the position of a source, groups of sensors can collabo-
rate to determine whether they can settle upon a λi which ensures
(2.3). This provides guidance on how to deploy fewer sensors to
achieve greater coverage.

5. SIMULATIONS

We present two examples where (2.4) is applied when: x1 =
[1, 0, 0]T , x2 = [0, 2, 0]T , x3 = [−2,−1, 0]T , x4 = [0, 0, 2]T ,
and x5 = [0, 0,−1]T . We use a μ = 0.02, assume a Gaus-
sian noise perturbs each distance measurement and perform 400-
step-long runs with various noise levels. We plot the square of
the estimation error (averaged over such 500 runs for each xed
SNR) as a function of the SNR. The results when y∗ = 0, and
y∗ = [−1, 1, 1]T are in g. 3 and g. 4 respectively. Both show
very good localization ability despite the fact that noise is present
and that in the second case y∗ /∈ Co(x1, · · · , x5). In both case
P + P T > 0.
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Fig. 3. Simulation example when y∗ = 0
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Fig. 4. Simulation example when y∗ = [−1, 1, 1]T

6. CONCLUSION

We have studied conditions under which a localization algorithm
involves a globally convergent gradient descent minimization prob-
lem. In particular given a set of nodes with known positions (e.g.
sensors), this algorithm seeks to localize an object (e.g. a source)
whose distances from these nodes are available. Given a set of
such sensors and a set of weights we characterize a nontrivial el-
lipsoidal geographical region surrounding these sensors such that
a source lying in this region can be localized through a minimiza-
tion described above. We also characterize a polytopic region for
which there exist weights that permit similar localization.
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