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Abstract— In this paper, we present wide band frequency invariant
beamforming and Angle of Arrival (AoA) estimation techniques. We pro-
pose a new Linear Quadratic (LQ) frequency domain frequency invariant
beamforming strategy. Based on the proposed beamforming strategy, we
give a new AoA estimation technique using blind identification. Simula-
tion results illustrate the performance of the proposed beamforming and
AoA estimation strategies.
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I. INTRODUCTION

Various approaches to choosing the weights in a beam-

former have been proposed in the literature (see e.g., [1]–[4]).

In one of the earliest works [1], the commonly known Mini-

mum Variance Distortionless Response (MVDR) beamformer

was first derived. Subsequently, choosing the weights to mini-

mize the output power or variance subject to linear constraints

have been studied (see e.g., [2], [3]). Such beamformers are

commonly known as Linear Constrained Minimum Variance

(LCMV) or Linear Constrained Minimum Power (LCMP)

beamformers depending on whether they minimize the out-

put variance or output power respectively. In [3], quiescent

pattern constraints are used to specify the beam pattern so that

the weights of the beamformer provide a pattern as close as

possible to the quiescent pattern in a mean square sense while

minimizing the output power or variance.

However, the above referred works deal with narrow-band

beamforming and may not be applicable directly to wide band

signals, particularly when the beampattern is required to be

approximately the same for all the frequencies in the band-

width under consideration. Frequency Invariant Beamformers

(FIBs) are beamformers which result in the beampatterns be-

ing approximately constant with respect to frequency over a

design bandwidth. Some of the works on the design of fre-

quency invariant beamformers can be found in [5]–[9]. In

this paper, we propose a new linear quadratic frequency do-

main frequency invariant beamforming strategy. The proposed

linear quadratic frequency domain frequency invariant beam-

former may be viewed as a wide band beamformer with qui-

escent pattern constraints. The proposed beamformer seeks to

provide a pattern as close as possible to the quiescent pattern in

a mean square sense for all frequencies in a design bandwidth.

Now, it is known that the problem of estimating the AoA of

signals at an antenna array has many applications in sonar and

radar, satellite and cellular networks, and wireless ad-hoc and

sensor networks. Some of the works that have been done in the
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area of narrow band AoA estimation include [10]–[11]. MU-

SIC [10] and ESPRIT [11] rely on signal and noise subspaces

related to a set of generalized eigenvectors of the data covari-

ance matrix pertaining to the array output. Several approaches

to wide band AoA estimation have also been investigated (see

for e.g., [12]–[16]). In [13] for example, a Coherent Signal

Subspace (CSS) approach is introduced, where the wide band

data is decomposed in to several non overlapping narrow band

frequency bins, and the signal subspaces at different frequen-

cies are combined to form a new signal subspace for which a

narrow band scheme like MUSIC can be applied. In [15], [16],

wide band AoA estimation approaches based on frequency in-

variant beamformers are proposed. In this paper, we also pro-

pose a new AoA estimation technique based on the proposed

linear quadratic frequency domain frequency invariant beam-

forming strategy and blind identification concepts.

The organization of the paper is as follows. In Sec. II, we

describe the system model. Sec. III deals with the design of

a new linear quadratic frequency domain frequency invariant

beamformer and Sec. IV deals with a new AoA estimation

strategy. Sec. V gives the simulation results.

Note that we will use bold lowercase and upper case char-

acters to denote vectors and matrices respectively. We will

indicate time series with square brackets (e.g,. x[k]) and fre-

quency responses with round brackets (e.g., x(f)).

II. SYSTEM MODEL

Consider an uniformly spaced linear array of N antenna ele-

ments with inter element spacing do. Assume that there are D
broadband sources. Let θ̆d denote the direction of arrival of the

plane wave from source d measured relative to the line joining

the array elements, where 0 ≤ d ≤ D−1. The signal received

at the i-th antenna element at time k for 0 ≤ i ≤ N − 1 is

given by

xi[k] =
D−1∑
d=0

sd[k − τi(θ̆d)] + ni[k] (1)

where sd[k] is the d-th source signal, ni[k] is zero mean white

noise, and τi(θ̆d) = idocos(θ̆d)/c, where c is the velocity of

light. The Fourier transform of xi[k] is given by

xi(f) =
D−1∑
d=0

exp(−j2πfτi(θ̆d))sd(f) + ni(f) (2)

Let x(f) denote the N × 1 vector of frequency responses of

signals received by the array and given by

x(f) = [x0(f), x2(f), ....., xN−1(f)]T (3)
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Then

x(f) = A(Θ̆, f)s(f) + n(f) (4)

where

s(f) = [s0(f), ....., sD−1(f)]T , Θ̆ = [θ̆0, ...., θ̆D−1]T

and n(f) = [n0(f), ....., nN−1(f)]T is the N × 1 additive

noise vector. Moreover

A(Θ̆, f) = [a(θ̆0, f), ....,a(θ̆D−1, f)]

is the matrix containing the array manifold vectors, where the

N × 1 complex array manifold vector a(θ, f) at an angle θ ∈
[0, π] and frequency f is given by

a(θ, f) = [1, e{−j2πfτ1(θ)}, ......, e{−j2πfτN−1(θ)}]T (5)

Note that e{−j2πfτ0(θ)} = 1 for all 0 ≤ θ ≤ π and all

f > 0. The beamformer structure adopted in this paper is

a frequency domain structure, defined by the quantities wi(f)
for 0 ≤ i ≤ N −1 which denote the frequency response of the

weight at antenna element i and frequency f . The response of

this beamformer for the plane waves arriving at an angle θ at

frequency f is

q(θ, f) =
i=N−1∑

i=0

wi(f)e{−j2πfτi(θ)} (6)

This may be rewritten as q(θ, f) = wH(f)a(θ, f) where

w(f) = [w0(f), ......., wN−1(f)]H is the N × 1 filtering

vector. The frequency response of the beamformer output is

then given by

y(f) = wH(f)x(f) (7)

The beamformer output y[k] as a time series is the inverse

Fourier transform of y(f).
We will now proceed to give the design methodologies for

the frequency invariant beamformer and the AoA estimation

strategies.

III. FREQUENCY INVARIANT BEAMFORMER DESIGN

In this section, we design a frequency invariant beamformer

whose response is independent of frequency f , or in other

words, q(θ, f) ≈ q(θ) for all f ∈ [fl, fh], and for all

θ ∈ [0, π].
Firstly, let θm for m = 0, 1, ...M−1 (M given) be M values

equally spaced in [0, π]. We divide the frequency bandwidth

[fl, fh] in to Z bins, where the k-th bin for k = 0, 1, .....Z−1,

starts at fk = fl + kΔf , where Δf = fh−fl

Z . Now, define

wi(k) = wi(fk) for i = 0, 1, ..., N − 1. Also, let

w(k) = [w0(k), ......., wN−1(k)]H

q = [q(θ0), ........, q(θM−1)]H

and

L(k) = [a(θ0, fk), ......a(θM−1, fk)]H

Let w̄Q denote a quiescent weight vector whose correspond-

ing quiescent beam pattern BQ(θ) = w̄H
Qa(θ, f̄o) at center

frequency f̄o = [(fl + fh)/2] is q(θ). Our aim is to design

w(k) for k = 0, 1, ..., Z − 1 such that

wH(k)a(θ, fk) ≈ wH(ko)a(θ, f̄o) ≈ q(θ)

for all fk ∈ [fl, fh] and fko = f̄o.

We now design a beamformer that seeks to provide a pat-

tern as close as possible to the quiescent pattern q(θ) in a

mean square sense for all frequencies in a design bandwidth.

Our frequency domain frequency invariant beamformer de-

sign methodology will be as follows. We initially initialize

w(0) = w̄Q. We will then recursively determine w(k + 1)
from w(k) using the form

w(k + 1) = w(k) + u(k), k ≥ 0 (8)

where u(k) is a deterministic input called the control vector.
At each instant k, we shall determine the control signal u(k)
such that the following cost function J is minimized.

J =

Z−1∑

k=0

[
‖L(k + 1)w(k + 1) − q‖2

P̃

]

+

{
Z−1∑

k=0

[
‖w̄Q − w(k + 1)‖2

R̃
+ ‖u(k)‖2

]}

P̃ = λ1I and R̃ = λ2I are positive definite weighing ma-

trices. Note that minimizing the above cost function would

imply minimizing at every frequency fk, the following terms

- the difference between the quiescent weight vector and the

weight vector w(k), the difference1 between wH(k)a(θ, fk)
and q(θ) for all fk ∈ [fl, fh] and for all θ ∈ [θ0, ........, θM−1],
and the energy of the control sequence u(k) itself. We will

rewrite the above cost function in the following form.

J =

{
Z−1∑
k=0

[ ‖L̄(k + 1)w(k + 1) − q̄‖2
P̄ + ‖u(k)‖2

]}

(9)

where

L̄(k) = [L(k)T IN×N ]T , q̄ = [qT w̄T
Q]T

P̄ =
(

P̃ 0
0 R̃

)
and IN×N represents the Identity matrix. We now wish to

choose the sequence of control vectors {u(k)} such that the

objective function J is minimized. It is known that the solu-

tion to the above problem is given as follows [17].

u(k) = [M(k + 1) + I]−1[−M(k + 1)w(k) + Γ(k)]
Γ(k) = [I − M(k + 1)[I + M(k + 1)]−1]Γ(k + 1)

+L̄(k)T P̄q̄
M(k) = M(k + 1)[I + M(k + 1)]−1 + L̄(k)T P̄L̄(k)

with initial conditions

M(Z) = L̄(Z)T P̄L̄(Z), Γ(Z) = L̄(Z)T P̄q̄

1Note that we have incorporated a quiescent pattern constraint over θ ∈
[θ0, ........, θM−1].
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Linear Quadratic
tracking algorithm

Fig. 1. Frequency domain frequency invariant beamformer architecture.

Once the control vectors u(k) are known, then the frequency

domain frequency invariant beamformer weights w(f) at f =
fk can be calculated 2. See Fig. 1 for a block diagram of the

proposed beamformer.

IV. ANGLE OF ARRIVAL ESTIMATION ALGORITHM

In this section, we give a new angle of arrival estimation

algorithm based on the linear quadratic frequency domain fre-

quency invariant beamforming methodology described in the

previous section. Assume that we now form J (D < J) fre-

quency invariant beamformers using J different quiescent pat-

terns with the methodology described in the previous section.

Let the frequency response of the j-th beamformer be wj(f),
for j = 0, 1, ....J − 1. Define

rj(θ)
Δ=|wH

j (f̄o)a(θ, f̄o)| ≈ |wH
j (fk)a(θ, fk)|

and

rj(Θ̆) = [rj(θ̆0), ..........., rj(θ̆D−1)]

for j = 0, 1, ....J − 1. Let the J beamformers be chosen

such that rj(θ) > ri(θ) for all j < i and for all θ, i.e, the

J beampattern gains are ordered for all θ. Define the vector

b(θ) = [r0(θ) r1(θ) ... rJ−1(θ)]T . Denote the stacked vec-

tor of beamformer responses as

z(f) = [wH
0 (f) wH

1 (f) ..wH
J−1(f)]T x(f)

Let

Ab(Θ̆, f) = [wH
0 (f) wH

1 (f) ..wH
J−1(f)]T A(Θ̆, f)

We then have using equation (4) that

z(f) = Ab(Θ̆, f)s(f) + nb(f) (10)

where nb(f) is zero mean noise vector. Now, due to the

frequency invariant nature of the beamformers, we have that

Ab(Θ̆, f) = Ab(Θ̆) for all f ∈ [fl, fh]. Hence

z(f) = Ab(Θ̆)s(f) + nb(f) (11)

2Note that, in practice the Fourier transform and the inverse Fourier trans-
form blocks are implemented using FFT and IFFT and hence only w(k)
which are w(f) at f = fk are needed.

We assume that the beamformers are designed in such a way

that the matrix Ab(Θ̆) is full rank. Note that if Mb(Θ̆) repre-

sents the matrix with components that are magnitudes of corre-

sponding components in Ab(Θ̆), then it can be seen that the j-

th row of Mb(Θ̆) is rj(Θ̆) and the d-th column of Mb(Θ̆) is

b(θ̆d). Since the J beampattern gains are ordered, the largest

element of any column in the matrix Mb(Θ̆) is always in the

first row, and each of the columns of matrix Mb(Θ̆) are or-

dered. Now using equation (11) and calling upon any blind

identification algorithm like AMUSE [18] or SOBI [19], we

can estimate the matrix Ab(Θ̆). We list below the steps to

estimate the matrix Ab(Θ̆) based on AMUSE [18] and also

show how the indeterminacy problem in blind identification

due to gain is solvable3.
1. Estimate the covariance matrix Rz = E(z(f)z(f)H).
2. Compute an SVD of Rz as follows.

Rz = [u1, ....,uN ]diag(λ2
1, λ

2
2, ....λ

2
N )[u1, ....,uN ]H

3. Estimate the number of sources D from the number of sig-

nificant singular values. Estimate the noise variance σ2 from

the insignificant singular values.

4. Let μi =
√

(λ2
i −σ2) for i = 1, 2, ...D. Let z̄(f) = T̄z(f)

where

Us = [u1, ....,uD], T̄ = diag(
1
μ1

,
1
μ2

, ....,
1

μD
)UH

s

5. Select a τ such that (R̄z(τ) + R̄z(τ)H)/2 has distinct

eigenvalues, where R̄z(τ) = E(z̄(f)z̄(f + τ)H).
6. Let V be the eigenmatrix obtained from the eigen decom-

position of (R̄z(τ) + R̄z(τ)H)/2. DetermineÂ = T̄HV.

7. Form the matrix M̂ whose u-th row and v-th column ele-

ment is the magnitude of the corresponding u-th row and v-th

column element of Â. Let the d-th column of M̂ be denoted

by cd.

8. The estimate of the d-th angle of arrival is given by
´̆
θd =

arg min
θ,0<α<αmax

‖αcd−b(θ)‖, where αmax is such that αmaxcd

is greater than the maximum element4 of b(θ) for all5 θ.

V. SIMULATIONS

In order to illustrate the performance of the proposed fre-

quency domain frequency invariant beamforming and AoA es-

timation strategies, a three element antenna array is considered

with inter element spacing of 0.05m. Figs 2–3 illustrate the

performance of the proposed frequency domain frequency in-

variant beamforming strategy. To illustrate the design method-

ology (described in Sec. III), we choose a quiescent weight

vector as

w̄Q = [0.4+0.0316i, 0.4821−0.0013i, 0.0718−0.0288i]T

The bandwidth under consideration is [2.0 GHz, 2.2 GHz]
with center frequency f̄o = 2.1 GHz. Fig. 2 shows the beam-

patterns for the frequency invariant beamformer designed us-

ing w̄Q at 25 different frequencies in the bandwidth under

3Indeterminacy due to permutation does not affect the extraction of the D
angles of arrival.

4Note that b(θ) is known for all θ from the design of the beamformers.
5Note that, any other blind identification algorithm may also be used in

conjunction with equation (11) and steps 7 and 8.
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Fig. 2. Beampatterns (designed from w̄Q) for twenty five different frequen-
cies in [2.0 GHz, 2.2 GHz].
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Fig. 3. Beampatterns (designed from w̄Q) for f ∈ [2.0 GHz, 2.8 GHz].

consideration. Fig. 3 shows the three dimensional plot of

beampattern gains with respect to frequency and angle. To

illustrate the performance of the proposed AoA estimation al-

gorithm, number of sources is assumed 1 whose signal arrives

at the antenna array at 40 degrees. Fig. 4 illustrates the per-

formance of the proposed AoA estimation strategy based on

AMUSE [18] and SOBI [19].

VI. CONCLUSIONS

In this paper, we have presented a new linear quadratic fre-

quency domain frequency invariant beamforming strategy and

a blind identification algorithm based AoA estimation tech-

nique. The proposed frequency domain beamformer is ob-

tained by the solution to a quadratic cost minimization prob-

lem. The AoA estimation technique uses the proposed fre-

quency invariant beamforming structure and a blind identifi-

cation algorithm.
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