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ABSTRACT
We consider the problem of DOA (Direction Of Arrival)
estimation of an acoustic wavefront by a Wireless Sensor
Network (WSN) within the SENMA architecture (a Mobile
Agent (MA) repeatedly polls the sensors lying inside its
eld of view). The sensors, which are random in number

and location, are DOA-blind and simply emit a pulse train
synchronized to the acoustic event’s passage; taken in ag-
gregate, however, the MA can exploit its non-isotropic eld
of view (FOV) to infer an accurate DOA. In this paper we
(i) use a more realistic “soft” FOV; (ii) account for multiple
sources; and (iii) suggest a strategy for the MA. We nd that
the presence of more than one source can improve DOA
estimation, and also that an optimal strategy for the MA
squints near the expected DOA, as opposed to directly at it.

Index Terms— Wireless Sensor Network (WSN); SEnsor
Networks with Mobile Agent (SENMA); Multiple DOA
Estimation; Dumb Sensors.

I. INTRODUCTION

The problem of estimating the Direction Of Arrival (DOA)
of an acoustic planar wavefront using a Wireless Sensor
Network (WSN) within the SENMA architecture (SEnsor
Network with Mobile Agents, [1]) has been dealt in some
recent papers [2], [3]. A distinct feature of the approach
pursued in [2], [3] was that individual sensors (also referred
to as nodes) of the network are completely blind to DOA:
they have no possibility of recognizing the DOA of an
impinging acoustic wave, but they are only capable of
sensing the acoustic signal and of recording the impinging
time instant.

The key point is that they do not transmit bits of data but
simply emit an analog periodic signal made of short pulses.
In aggregate, they form a train of delta-like pulses, and this
is what the rover observes. After an appropriate number of
network polls, the MA can estimate the desired DOA based
upon the concentration of the pulses in time, as in Fig. 2.
A key feature of the MA is its eccentric eld of view: an
ellipse was used in [2], [3]. Here we extend that to a more
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Fig. 1. The reference scenario.

realistic (i.e., with smoother boundaries) the MA’s eld of
view, and to multiple sources.

The reference scenario is depicted in Fig. 1. The DOAs
are θi ∈ (0, π), i = 1, 2; later on, a MA polls the sensors
within its eld of view. At each snapshot the MA’s eld of
view has a different and arbitrary orientation φs ∈ (0, 2π),
with s = 1, 2, . . . , the snapshot index. It is convenient to
model such a sequence {φs} as independent realizations of
a random variable uniformly distributed in [0, 2π). In any
case we assume that successive dwells are independent of
each other, in the sense that they always involve different
sensors. Our paper is organized as follows. The probabilistic
eld of view and its impact on the single DOA estimation

problem are discussed in section II. The multiple DOA
estimation is presented in section III. The optimization of
the MA orientation φs is discussed in Sect. IV. Suppressed
mathematics are in [4].

II. SINGLE DOA ESTIMATION

II-A. Smooth eld of view

In [2], [3] the rover’s eld of view has been considered
deterministic i.e. in the sense that all the sensor lying inside
were seen by the rover, while sensors lying outside were
surely invisible. According with a more realistic scenario,
the event that a sensor is visible or not is better modeled
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Fig. 2. The cumulative number of pulses versus time, for a DOA
oriented to the FOV major and minor axes, reference gure 1. If
the acoustic event travels along the long/short axis of the FOV the
pulses are relatively diffused/concentrated in time.

as having a spatially-variant probability, rather than being
on/off. Our choice for this probability is:

p(x, y) = exp
{
−1

2

[
x2

α2
+

y2

β2

]}
, (1)

where the positive constants α and β (we assume α ≥ β)
determine the eccentricity of this probabilistic eld of view
and its rate of decaying to zero. The level curves of the
above Gaussian-shaped probability are ellipses, see Fig. 1:
this is a natural generalization of the model proposed in [2],
[3], where a deterministic (i.e., on/off) ellipse was used.

II-B. Density of hitting times

Let us assume for the time being that a single acoustic
wave impinges on the network, and let τi be the time instant
that the ith sensor is hit by the wavefront. Each MA’s
snapshot s corresponds to the vector of hitting times τ s =
(τ1, τ2, . . . , τNs

). Depending on the chosen displacement and
visibility of the sensors1, it can be shown that the measured
times τis are independent samples from the following density

fτi
(τ) =

1
σs

√
2π

e
− τ2

2σ2
s , (2)

wherein

σ2
s =

a2
sα

2 + β2

(1 + a2
s)v2

, (3)

with v being the velocity of sound, as being tan(θ − φs),
and φs being the orientation of the MA at snapshot s.

1It can be shown that the distribution of the sensors seen (i.e., polled and
heard) by the rover forms an inhomogeneous spatial Poisson process.

II-C. ML Estimation and Fisher information

Recall that τ s is made of independent entries τis: we have
τ s ∼ fτ s

(τ s)=
∏Ns

i=1 fτi
(τi), with fτi

(τi) given by eq. (2).
Times collected in successive snapshots are independent, but
not identically distributed, as (2) depends on s through σs.

Since we cannot observe τ s, but only ts, we need the
statistical characterization of the latter. Consider hence the
Ns random variables (τ1, t2, t3, . . . , tNs) = [τ1, ts]. Their
joint density is F (τ1) = f[τ1,ts](τ1, t2, t3, . . . , tNs

) =
fτ s

(τ1, t2 + τ1, t3 + τ1, . . . , tNs
+ τ1). We have

F (τ1) =
Ns∏
i=1

1
σs

√
2π

exp
{
− (ti + τ1)2

2σ2
s

}
(4)

with −∞ < τ1 < ∞, and fts
(ts) =

∫ +∞
−∞ F (τ1)dτ1.

Integrating eq. (4) with respect to τ1 amounts to marginal-
izing an Ns-dimensional multivariate Gaussian density. The
result is

fts
(ts) =

exp
(− 1

2tT
s C−1ts

)
(2π)

Ns−1
2 (det C)1/2

, (5)

where C = σ2
sZ and where we have de ned the (Ns−1)×

(Ns − 1) covariance matrix

Z =

⎛⎜⎜⎜⎝
2 1 . . . 1
1 2 . . . 1

...
1 1 . . . 2

⎞⎟⎟⎟⎠ . (6)

Clearly, C depends upon the DOA θ only through σ2
s .

As M grows, θ̂ML attains its asymptotic properties
of unbiasedness and ef ciency [5]: E[θ̂ML] → θ, and
VAR[θ̂ML] → I−1

M (θ). Here IM (θ) =
∑M

s=1 Js(θ) is the
M -snapshots Fisher information with respect to θ, which
results in

IM (θ) = M(N̄ − 1 + e−N̄ )
(
√

1 − ψ2 − 1)2√
1 − ψ2

. (7)

Here M is the total number of snapshots, N̄ is the
average number of sensors per single snapshot and ψ =√

1 − (β/α)2 represents the eccentricity of the ellipses’
family, namely the eccentricity of the MA’s eld of view.

From (7) we see that IM (θ) is constant with respect to θ,
grows linearly with M and approximately linearly with N̄ . It
is also easy to show that IM (θ) is an increasing function of
the eccentricity parameter ψ. Monte Carlo results are shown
in Fig. 3. We see that the ML estimator approaches the
CRLB very quickly as the number of snapshots increases.

III. MULTIPLE-DOA ESTIMATION

In contrast with the previous setup [2], [3], we now
assume that the communication protocol between sensors
inside the eld of view and MA enables this latter to
recognize which signals come from which sensors: sensors
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Fig. 3. Performance of the proposed estimator, in terms of the
MSE E[(̂θ − θ)2], compared to the Fisher proxy. In this example
we have v = 1 m/s, α = 1 m, β = 0.3 m, λ = 10 m−2, resulting in
N̄ ≈ 19. Simulations are based on standard Monte Carlo counting
process, involving 1000 runs for each point.

are identi able. We now consider the joint estimation of
multiple DOAs and, for simplicity, we only refer to the case
of 2 DOAs.

Recall that τij is the time instant when the ith sensor is
impinged upon by the plane wavefront of the jth source. The
joint pdf f(τi1, τi2) of the time instants τi1 and τi2 results
in the following Gaussian density

f(τi1, τi2) =

exp

{
−

τ2
i1

σ2
1s

−2ρs
τi1τi2
σ1sσ2s

+
τ2

i2
σ2
2s

2(1−ρ2
s)

}
2πσ1sσ2s(1 − ρ2

s)
(8)

where

σ2
1s = a2α2 + b2β2, σ2

2s = c2α2 + d2β2,
a = sin(θ1 − φs)/v, b = cos(θ1 − φs)/v,
c = sin(θ2 − φs)/v, d = cos(θ2 − φs)/v,

ρs =
acα2 + bdβ2

σ1sσ2s
.

(9)

The key point is that the joint estimation of the two
DOAs exploits the correlation between τi1 and τi2 (where
the subscripts 1 and 2 denote θ1 and θ2 respectively)
that we have deliberately ignored previously. Recall that
(τ s1, τ s2) is made up of independent entries τi1 and τi2,
thus the complete statistical characterization of the joint
vector (τ s1, τ s2) is f(τ s1, τ s2) =

∏Ns

i=1 f(τi1, τi2). At each
snapshot the MA can only observe 2(Ns −1) relative times.
Taking for instance as reference τ11 and τ12, the observables
become (ts1, ts2) = (t21, t31, . . . , tNs1, t22, t32, . . . , tNs2).
The distribution of the joint vector ts12 = (ts1, ts2) results
in a 2(Ns − 1)-dimensional multivariate Gaussian density

fts12
(ts12) =

exp
(− 1

2tT
s12Σ

−1ts12

)
(2π)

2(Ns−1)
2 (detΣ)1/2

, (10)
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Fig. 4. Single DOA versus joint ML estimation procedures. In
this example we have v = 1 m/s, α = 1 m, β = 0.3 m, λ = 3
m−2, N̄ ≈ 6, θ = (θ1, θ2) = (π/3, π/6). The MSE of ̂θ1 is
compared to its lower bound and to the performances of the single
DOA approach. Simulations are based on standard Monte Carlo
counting process, involving 1000 runs for each point.

having 2(Ns−1)×2(Ns−1) covariance matrix of the form

Σ =

⎛⎜⎜⎝ C1

... Cρ

. . . . . . . . .

Cρ

... C2

⎞⎟⎟⎠ . (11)

In the above we have introduced the (Ns − 1) × (Ns − 1)
matrices C1 = σ2

s1Z, C2 = σ2
s2Z, Cρ = ρsσs1σs2Z, and

Z is de ned in eq. (6).
The matrix Σ depends upon the parameters θ1 and θ2 of

the different DOAs through σs1, σs2 and ρs, see eq. ( 9).
The likelihood corresponding to M independent snapshots
results in the product of the individual likelihoods, and the
ML estimation θ̂ML = (θ̂1ML, θ̂2ML) of the 2 DOAs is

θ̂ML = arg max
θ

M∏
s=1

fts12
(ts12). (12)

In the case of vector estimates, the concept of Fisher
information generalizes to the Fisher Information Matrix
(FIM) [5]. The FIM results in the symmetric form

IM (θ) =
M

4
(N̄−1+e−N̄ )

(
Λ(θ, ψ) Ω(θ, ψ)
Ω(θ, ψ) Λ(θ, ψ)

)
, (13)

where θ = (θ1, θ2), and the expressions of Λ(θ, ψ) and
Ω(θ, ψ) are not given for simplicity.

Due to the symmetric nature of the FIM in eq. (13), we
note that, for a given θ, the MSE lower bounds of the two
estimates θ̂1 and θ̂2 are the same. Thus, the performances of
these two estimators approach the rst diagonal entry of the
inverse FIM which is given by

I−1
M(1,1)

(θ) =
1

4M(N̄ − 1 + e−N̄ )

(
−α4 − 6α2β2 + β4

(α2 − β2)2

+
α4 + 14α2β2 + β4

α4 + 10α2β2 + β4 + 4α2β2 cos(2(θ1 − θ2))

)
.
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When compared to the single DOA ML estimator, the
performance improvements obtained by exploiting the data
correlation are remarkable, as expected. An example of such
comparison is offered in Fig. 4 where almost an order of
magnitude is gained in terms of MSE. The reason for this
improvement is that the location of each sensor within the
FOV can be triangulated when there is more than one DOA:
better inference becomes possible.

IV. OPTIMUM ROVER ORIENTATION

In [2] it was assumed that the rover travels across the
network with iid uniform orientations {φs}∞s=1. We now in-
vestigate the performance improvement that can be achieved
by optimizing the rover orientation φs at each snapshot s.
The optimization criterion is based on maximizing the Fisher
information Js(θ, φs) with respect to φs. It can be shown that
φopt

s is given by

φopt
s = θ ± arctan

(
β

α

)
. (14)

while φs = θ (the rover always points towards the source) is
the point of minimum of the Fisher information. Clearly, in
order to select the optimal orientation φs one should know θ.
In practice we can use its current estimate θ̂s instead. Thus,
we can choose the following orientation strategy:

φopt
1 = ± arctan

(
β

α

)
,

φopt
s = θ̂s−1 ± arctan

(
β

α

)
, s > 1.

As to the indeterminateness of the signs, for s = 1 the
choice is arbitrary, and for s > 1 we alternatively switch
between the two. Although one might at rst blush believe
that to point directly toward θ̂s−1 it is apparently better to
squint to the right or left: an intuitive explanation is that
when the FOV is pointed directly towards the true DOA
the derivative of both the spread and the concentration of
“beeps” is zero. This derivative represents the sensitivity of
the estimate to the measurement, and the nadir of each when
either the major or minor axis is toward the true DOA.

Replacing φs with φopt
s , the Fisher information becomes

Iopt
M (θ) =

M

2
(N̄ − 1 + e−N̄ )

(
ψ4

1 − ψ2

)
, (15)

which veri es the fact that Iopt
M (θ) > IM (θ), ∀ψ.

Fig. 5 shows the MSE improvement with the optimized
rover orientation, compared to uniformly chosen φs. Also
shown is the MSE corresponding to a rover always pointed
towards the source (i.e., φs = θ̂); as expected the perfor-
mance worsens.
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Fig. 5. Estimation MSE versus the number of snapshots. CRLB
and optimum CRLB refer to the inverse of IM (θ) and Iopt

M (θ),
respectively (see eqs. (7) and (15)). We see that a uniform choice of
φs asymptotically leads to 1/IM (θ), while the optimized strategy
achieves 1/Iopt

M (θ). For illustrative purposes, it is also shown that,
as expected, choosing φs = ̂θ leads to the worst performances. This
example refers to v = 1 m/s, α = 1 m, β = 0.3 m, λ = 10 m−2,
resulting in N̄ ≈ 19. Simulations are based on standard Monte
Carlo counting process, involving 1000 runs for each point.

V. CONCLUSIONS

Previously, we explained how a eld of DOA-blind sen-
sors might be made to estimate DOAs using the SENMA
communication architecture. Here, we elaborate, in that

• we have shown that estimation is possible with the non-
ideal FOV: in fact, the expressions are simpler;

• we have found that DOA estimation performance can
be better for multiple than for single sources; and

• we have proposed a “sensor management” strategy for
the MA to orient its FOV, with the discovery that the
best orientation is neither directly toward the true DOA
(or the current best estimate of it) nor away, but squinted
at an oblique angle.
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