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ABSTRACT

A new algorithm for estimating the parameters of multiple
wideband polynomial-phase signals (PPSs) in sensor arrays
is developed. The spatial high-order instantaneous moments
(SHIMs) are rst de ned using a nonlinear transformation of
the array snapshot vectors. Then, the properties of SHIMs of
multiple wideband PPSs are employed to obtain recursive es-
timates of the PPS frequency parameters. The time-frequency
properties of SHIMs are then exploited for estimating the sou-
rce directions-of-arrival (DOAs) using spatial time-frequency
distributions (STFDs). The proposed algorithm is shown to
have an improved performance compared to the chirp beam-
former technique. Since our algorithm is based on multiple
one-dimensional searches, it also offers a much simpler im-
plementation avoiding multi-dimensional search needed for
other algorithms.

Index Terms— Array signal processing, direction-of-ar-
rival estimation, parameter estimation

1. INTRODUCTION

The estimation of the parameters of polynomial-phase signals
(PPSs) is an important problem encountered in many practical
applications such as radar, sonar and mobile communications.
In such applications, the received signal waveforms can often
be modeled as PPSs [1], [2]. FM signals can also be intention-
ally transmitted in synthetic aperture radar (SAR), synthetic
aperture sonar (SAS), inverse SAR, inverse SAS, Doppler
radar/sonar, and mobile communication systems. There are
numerous contributions to the problem of PPS parameter es-
timation in the single antenna case, see for example [1], [2]
and references therein. In particular, high-order instantaneous
moments (HIMs) and their Fourier-transformed (referred to
as high-order ambiguity functions) have been used in [1] to
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derive a simple and computationally attractive algorithm for
estimating the PPS parameters.

Recently, estimating the parameter of multiple PPSs in
sensor arrays has gained a considerable interest [3]-[6]. Sev-
eral methods that solve this problem using narrowband as-
sumptions have been reported in the literature. For example, a
new class of subspace methods that are based on spatial time-
frequency distributions (STFDs) has been proposed in [3] to
estimate the DOAs of narrowband chirp sources. Several ap-
proaches for estimating the parameters of multiple wideband
PPSs have also been reported, see [4]-[6]. In particular, an
exact ML estimator that takes advantage of the speci c PPS
structure of the source waveforms has been proposed in [4].
In the same paper, the so-called chirp beamformer has been
developed that is a suboptimal estimator resulting from the
analysis of the log-likelihood function in the single linear FM
source case. However, chirp beamformer involves a multi-
dimensional search, and hence, it is computationally expen-
sive. Moreover, it suffers from a large bias even at high SNRs.

Another ambiguity function-based approach to DOA esti-
mation of PPS sources has been developed in [6]. However,
the method of [6] assumes that the signal initial frequencies
and the chirp rates are known or preestimated. Moreover, the
latter approach cannot be used for estimating the parameters
of wideband PPSs of order higher than two.

In this paper, we introduce a new algorithm for estimat-
ing the parameters of multiple wideband PPSs in sensor ar-
rays. We rst introduce the so-called spatial high-order in-
stantaneous moments (SHIMs) that are obtained by means
of a speci c nonlinear transformation of the data snapshots
[7], [8]. Then, we employ the SHIM properties to obtain
estimates of the frequency parameters in a recursive manner
starting with the highest-order frequency coef cients. Also,
we exploit SHIMs to estimate the DOAs using a STFD-based
approach. Speci cally, STFD matrices computed at certain
time-frequency points that belong to the SHIM signatures are
used to obtain the signal and noise subspaces. Our approach
is much more computationally attractive than the chirp beam-
former technique because it requires a reasonably small num-
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ber of one-dimensional searches instead of a multi-dimen-
sional search. Moreover, the proposed estimation technique
has a substantially improved performance as compared to the
chirp beamformer method of [4].

2. ARRAY SIGNAL MODEL

Let us consider L wideband constant-amplitude PPSs imping-
ing on a linear array of M omnidirectional sensors. The vec-
tor of array sensor outputs can be modeled as

x(t) = A(t)s(t) + n(t), t = 0, 1, . . . , N − 1 (1)

where A(t) is the M × L time-varying direction matrix, s(t)
is the L × 1 vector of wideband polynomial-phase source
waveforms, N is the number of array snapshots, and t is the
discrete-time index. The lth source waveform can be modeled
as

sl(t) = αl exp

{
j

K∑
k=1

ωl,ktk

k

}

where K is the known PPS order, ωl,k (l = 1, . . . , L; k =
1, . . . , K) are the unknown discrete-time frequency parame-
ters, αl is a complex-valued initial source amplitude, and j =√−1. The matrix A(t) � [a(ω̃1(t), θ1), . . . ,a(ω̃L(t), θL)]
consists of the time-varying steering vectors

a(ω̃l(t), θl) =
[
1, exp

{
j

ω̃l(t)
cΔt

d1 sin θl

}
,

. . . , exp
{

j
ω̃l(t)
cΔt

dM−1 sin θl

}]T

(2)

where Δt is the sampling time interval, dm is the interelement
spacing between the 1st and (m + 1)th sensors, c is the wave
propagation speed, θl is the DOA of the lth source, ω̃l(t) �∑K

k=1 ωl,ktk−1 is the discrete-time instantaneous frequency
of the lth waveform, and (·)T stands for the transpose. Note
that in (2) it is assumed that the instantaneous signal frequen-
cies ω̃l(t) (l = 1, . . . , L) do not change during the time nec-
essary for a wave to travel across the array aperture, i.e., the
signals remain narrowband within each snapshot, while being
wideband at the observation interval of the N samples [4].
Our objective is to estimate the unknown discrete-time fre-
quency parameters ωl,k (k = 1, . . . ,K; l = 1, . . . , L) and the
unknown DOAs θl (l = 1, . . . , L).

3. SHIMS AND THEIR PROPERTIES

Let us de ne the kth-order SHIM (k > 1) of the data vector
x(t) using the following rule

x(k)(t) = x(k−1)(t + τ) �
(
x(k−1)(t − τ)

)∗
(3)

where τ is a discrete-time lag (positive number), � is the
Schur-Hadamard (elementwise) product, (·)∗ is the conjuga-
tion operator, and x(1)(t) � x(t). The kth-order SHIM can
be viewed as a numerical differentiator of the kth order and
represents a multi-antenna extension of the corresponding kth-
order HIM [1]. Applying (3) to (1), we obtain the following
relationship [7]:

x(K)(t) =
L∑

l=1

s
(K)
l (t)a(Ω(K)

l , θl)

+n(K)(t) + crossterms (4)

where s
(K)
l (t) � α

(K)
l exp{jΩ(K)

l t} is a harmonic waveform

with the complex amplitude α
(K)
l (which is not explicitly de-

ned here for the sake of brevity; see [7] for more details),
and

Ω(K)
l = (2τ)K−1(K − 1)! ωl,K . (5)

In (4), n(K)(t) is the vector that captures all the noise terms
contained in the Kth-order SHIM, and the SHIM signature
vector associated with s

(K)
l (t) is given by

a(Ω(K)
l , θl) =

[
1, exp

{
j
Ω(K)

l

cΔt
d1 sin θl

}
,

. . . , exp

{
j
Ω(K)

l

cΔt
dM−1 sin θl

}]T

. (6)

Note that the frequencies of the sinusoidal components con-
tained in x(K)(t) are directly related to the highest-order fre-
quency parameters of the original PPSs. Hence, (5) provides
a basis for estimating ωl,K via Ω(K)

l . The simplest way to

estimate {Ω(K)
l }L

l=1 is to search for the L main peaks of the
frequency spectrum of each row of a SHIM data matrix com-
posed of the vectors x(K)(t) taken at different time indices.
This means that M estimates can be obtained for each fre-
quency parameter. These multiple estimates can be combined
in a certain way (for example, through their averaging, taking
their median value, etc.) to obtain a better nal estimate of
each frequency parameter.

As can be observed from (6), the SHIM signature vectors
do not depend on time. This opens an avenue for estimat-
ing the source DOAs using subspace-based techniques. The
structure of (4) is also suitable for using STFD-based methods
[3] for estimating the signal and noise subspaces.

4. THE PROPOSED ALGORITHM

In this section, we propose a computationally simple algo-
rithm to estimate the source parameters. Our algorithm can
be summarized as follows.

Step 1: Estimate the highest-order frequency parameters.
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Set k = K, choose a positive value τ , compute
the vectors x(k)(t) for different values of t, and form
the SHIM data matrix based on these vectors.

Compute the M estimates Ω̂(k)
l,m (m = 1, . . . , M )

by searching for the L highest peaks of the DFT spec-
trum of each row of the SHIM data matrix, and obtain

ω̂l,k,m =
Ω̂

(k)
l,m

(k−1)!(2τ)k−1 for all m = 1, . . . , M .

Compute the estimates ω̂l,k of ωl,k as the mean (or
median) of ω̂l,k,m, m = 1, . . . , M .

Step 2: Estimate the source DOAs.

Compute the pseudo Wigner-Ville time-frequency
distribution (PWVTFD) in one sensor (or the averaged
PWVTFD over all sensors) and detect the points that
belong to the time-frequency signatures1 of the har-
monic components in (4). At each such point, compute
the spatial pseudo Wigner-Ville distribution (SPWVD)
matrices

D̂x(K)(t,f) =
∑
T

x(K)(t + T )x(K)H
(t − T )e−j4πfT

where T is the discrete-time SPWVD lag.

Compute the STFD matrix as the average of these
SPWVD matrices, and use the eigendecomposition of
the latter matrix to estimate the signal and noise sub-
spaces.

Compute the estimates {θ̂l}, l = 1, . . . , L of the
source DOAs using any subspace-based method (e.g.,
MUSIC).

Step 3: Estimate the frequency parameters ωl,k (l = 1, . . . , L;
k = 1, . . . ,K − 1).

Set k = k − 1. Remove the contribution of the
already estimated frequency parameters by computing
the compensated data snapshots

x̃l,k(t) = e−j
∑ K

n=k+1 ω̂l,ntn/nx(t) � ãl,k

where

ãl,k �
[
1, exp

{
−j

d1

cΔt

K∑
n=k+1

ω̂l,ntn−1 sin θ̂l

}
,

. . . , exp

{
−j

dM−1

cΔt

K∑
n=k+1

ω̂l,ntn−1 sin θ̂l

}]T

.

For each source index l = 1, . . . , L, compute the
kth-order SHIMs of the compensated data snapshots
x̃l,k(t) and form the SHIM data matrix. Then obtain

1Techniques to detect such signature points are available in the literature
[9].

the estimates Ω̂(k)
l,m by searching for the highest peak of

the DFT spectrum of the mth row of the SHIM data ma-

trix. Find ω̂l,k,m =
Ω̂

(k)
l,m

(2τ)k−1(k−1)!
and compute the es-

timates ω̂l,k of ωl,k as the mean (or median) of ω̂l,k,m,
m = 1, . . . ,M .

Repeat the latter step until k = 1.

Step 4: Re ne the frequency parameter estimates using the
ML principle.

Form the matrices Gm (m = 1, . . . , M ), each of
size L × K, with the (l, k)th element of Gm being
ω̂l,k,m. For each Gm, m = 1, . . . , M , evaluate the
negative log-likelihood function [4]

N−1∑
t=0

‖x(t) − A(t,Gm, θ̂l)s(t,Gm)‖2 (7)

where θ̂l � [θ̂1, . . . , θ̂L]T . Choose the entries of the
particular Gm that minimizes (7) as the nal estimate
of the frequency parameters.

Note that, in contrast to chirp beamformer, the proposed
algorithm does not require any multi-dimensional search over
the DOA and frequency parameters. It uses multiple one-
dimensional searches instead, and this greatly reduces its com-
putational complexity as compared to chirp beamformer.

5. SIMULATION RESULTS

In our simulations, we assume a ULA of M = 10 omni-
directional sensors. Following [4], a sonar-type scenario is
considered with the sound propagation speed c = 1500 m/s
and the interelement spacing d = 1.5 m. The additive noise
is modeled as a complex Gaussian zero-mean spatially and
temporally white process that has identical variances in each
array sensor. We assume that the ULA receives two equi-
powered chirp signals impinging on the array from the di-
rections θ1 = 10◦ and θ2 = 20◦ relative to the broadside
and having the initial continuous-time frequencies 408 Hz
and 401 Hz, respectively, and the continuous-time chirp rates
−50 Hz/s and 60 Hz/s, respectively. The signals are sam-
pled with Δt = 0.0039 s and the observation interval of
N = 256 snapshots is taken. Prior to the processing, the re-
ceived signals are downconverted to the baseband frequency
interval. The second-order SHIM x(2)(t) of the received data
is computed using the time lag of τ = 25Δt. For each time-
frequency signature that corresponds to harmonic waveforms,
the SPWVD matrices are computed at 200 most signi cant
time-frequency points that belong to that signature. The root-
MUSIC algorithm is used to obtain the DOA estimates us-
ing the averaged STFD matrix. A total of 500 independent
Monte-Carlo simulation runs have been used to obtain each
point in simulations. The experimental RMSEs of the ini-
tial frequency, chirp rate, and DOA estimates are shown in
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Fig. 1. Initial frequency estimation RMSEs versus SNR.
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Fig. 2. Chirp rate estimation RMSEs versus SNR.

Figs. 1, 2, and 3, respectively, along with the PPS CRB of
[4]. From these gures it can be observed that, although the
proposed method does not achieve the corresponding CRB,
it has a much better performance than the chirp beamformer
technique.

6. CONCLUSIONS

A new algorithm to estimate the parameters of multiple wide-
band polynomial-phase signals in sensor arrays is proposed.
The properties of spatial higher-order instantaneous moments
are employed to recursively estimate the signal frequency pa-
rameters and to nd the estimates of the source DOAs us-
ing the spatial time-frequency distributions approach. Simu-
lation results illustrate substantial performance improvements
achieved by the proposed approach relative to the earlier chirp
beamforming technique.
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