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ABSTRACT

Estimator bank-based direction nding techniques make use
of a number of parallel randomly weighted MUSIC direction-
of-arrival (DOA) estimates and obtain the nal estimate by
keeping only the “successful” candidates while sorting out
the outlying estimates. In this paper, we develop a power-
ful approach to detect the outliers in the estimator bank-based
direction nders using the likelihood ratio quality assessment.
Computer simulations show substantial improvements of the
proposed approach as compared to the earlier techniques used
to sort out the outliers in the estimator bank-based direction
nding methods.

Index Terms— Array signal processing, direction nd-
ing, estimator banks

1. INTRODUCTION

One of main problems that limit the performance of subspace-
based direction nding methods at low signal-to-noise ratios
(SNRs) or small number of snapshots is the so-called thresh-
old effect caused by outliers in DOA estimates [1], [2]. To
improve the threshold performance of subspace-based tech-
niques, several methods have been proposed [3–7]. The ap-
proaches of [3–5] use a set of different parallel DOA estimates
to form the so-called estimator bank. Then, only the “success-
ful” estimates are chosen, while the outlying estimates are
dropped. To detect the “successful” estimates among the esti-
mates available in the estimator bank, it is proposed in [3] to
use a preliminary information about the angular sectors where
the sources are located. Unfortunately, the information about
source angular sectors is not always available or may be im-
precise. In [4] and [5], it is proposed to substitute the esti-
mated DOAs resulting from multiple parallel estimates into
the likelihood function and then pick the estimate with the
highest value of this function as the nal DOA estimate.

In this paper, we develop an alternative approach to detect
and select the “successful” estimates in the estimator bank
techniques using the likelihood ratio quality assessment [8].
Our computer simulations validate substantial improvements

of the proposed approach as compared to the earlier outlier
detection techniques used in estimator banks.

2. PROBLEM FORMULATION

Consider an array of M sensors receiving L (L < M ) nar-
rowband signals from mutually uncorrelated far- eld sources.
The number of sources is assumed to be known throughout
the paper. The array outputs can be modeled as

y(t) = A(θ)s(t) + n(t) (1)

where
A(θ) = [a(θ1),a(θ2), · · · ,a(θL)] (2)

is the M × L direction matrix, θ = [θ1, θ2, · · · , θL]T is the
L× 1 vector of source DOAs, s(t) is the L× 1 vector of ran-
dom source waveforms, n(t) is the M×1 vector of zero-mean
Gaussian sensor noise with the variance σ2 in each sensor,
and (·)T denotes the transpose.

Using (1), the covariance matrix of the array outputs can
be written as

R = E[y(t)yH(t)] = ASAH + σ2IM (3)

where S = E[s(t)sH(t)] is the L × L source covariance ma-
trix.

The sample covariance matrix can be expressed as

R̂ =
1
N

N∑
i=1

y(t)yH(t) . (4)

The eigendecompostion of R̂ can be written in the following
form

R̂ = ÛSΛ̂SÛH
S + ÛNΛ̂NÛH

N (5)

where the L×L and (M −L)× (M −L) diagonal matrices
Λ̂S and Λ̂N contain, respectively, the L and (M − L) signal-
and noise-subspace eigenvalues of R̂, and the columns of the
M × L and M × (M − L) matrices ÛS and ÛN contain the
corresponding eigenvectors.
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3. ESTIMATOR BANK-BASED DIRECTION
FINDING

The concept of estimator banks [3] is, given the sample co-
variance matrix R̂, to generate a set of K parallel candidate
DOA estimates

F = {fk(θ)}K
k=1 (6)

and then to pass each of these estimates through some out-
lier detection procedure. As a result, those DOA estimates
that are detected to contain outliers are dropped, whereas the
“successful” estimates (that pass the test) are combined to ob-
tain the nal DOA estimate.

It has been proposed in [3] to generate the candidate esti-
mates in (6) using the weighted MUSIC function

f(θ) =
1

aH(θ)ÛNWÛH
N a(θ)

(7)

with rank-one weighting matrices W = wkwH
k where wk

is an L × 1 random vector drawn from the complex Gaus-
sian distribution. Then, the underlying estimates in (6) can be
expressed as

fk(θ) =
1

|aH(θ)ÛNwk|2
. (8)

There have been several approaches to formulate the test
to detect the outlying estimates. In [3], it has been proposed
to preestimate the source angular sectors (for example, using
conventional beamforming methods) and then to reject or ap-
prove each particular candidate estimate fk(θ) based on the
number of peaks in the aforementioned angular sectors. Un-
fortunately, preliminary estimates of the angular sectors are
not always available in practice, and they may be erroneous
in the case when the sources have signi cantly different pow-
ers.

Another popular approach to detect outliers in multiple
parallel estimates is to obtain the source DOAs from each
candidate function fk(θ) and then to substitute them into the
likelihood function, always picking the DOAs that yield the
highest value of this function, see [4–6].

In the next section, we propose a new competitive ap-
proach to detect outliers in estimator banks that offers signif-
icant advantages as compared to the existing outlier detection
techniques. In particular, it does not require any preliminary
estimates of the source angular sectors as the approach of [3],
and provides better threshold performance than the approach
of [4]. Moreover, in contrast to the methods of [4] and [5], it
enables to predict how reliable is the nal DOA estimate (i.e.,
to decide whether the nal DOA estimate itself is an outlier).

4. DETECTING OUTLIERS USING LIKELIHOOD
RATIO TEST

The proposed approach is based on the computation of the
likelihood ratio for each estimate in (6) using the sphericity

test [8]. The key idea behind this test is, rst of all, to estimate
the source DOAs and the source and noise powers, and then
to compare an arti cially built covariance matrix R̃ (which
is recovered from the preliminary estimated DOAs and sig-
nal/noise powers, as well as known array manifold) and the
sample covariance matrix R̂.

To calculate R̃, one can start with the DOA estimates θ̂
obtained from each fk(θ) in the standard manner. Using these
DOA estimates, we obtain the estimate of the direction matrix
as Â = A(θ̂). The noise power is estimated by averaging the
noise-subspace eigenvalues, and then the source covariance
matrix is estimated as

Ŝ = Â†(R̂ − σ̂2IM )Â†H (9)

where (·)† stands for the pseudo-inverse.
With these estimates, R̃ can be computed as

R̃ = ÂŜÂH + σ̂2IM . (10)

Applying the sphericity test with the following hypothesis
[8]

H0 : E{R̃−1/2R̂R̃−1/2} = cIM against

H1 : E{R̃−1/2R̂R̃−1/2} �= cIM (11)

for c ≥ 0, we have that the likelihood ratio is given by

γ(R̃) =

⎛
⎜⎝ det(R̃−1R̂)[

1
M tr(R̃−1R̂)

]M

⎞
⎟⎠

N

� γN
0 (R̃). (12)

The quality of each particular DOA estimate in (6) can be ac-
cessed by examining the value of γ0 that shows the reliability
of the estimate tested.

As pointed out in [7] and [8], the values of γ0 correspond-
ing to non-outlying DOA estimates should exceed γ0(R) (that
is, the value of γ0 taken at the true covariance matrix). It
means that for a proper R̃ we should have

γ0(R̃) ≥ γ0(R). (13)

Unfortunately, in practical cases we do not have access to
the true covariance matrix R, i.e., the value of γ0(R) is un-
known. However, we can use the fact that the statistical dis-
tribution of γ0(R) is not scenario-dependent. Indeed it only
depends on the parameters N and M because [8]

γ0(R) =
detĈ[

1
M trĈ

]M
(14)

where Ĉ � R−1/2R̂R−1/2 ∼ CW(M,N ; IM ) and CW
stands for the central complex Wishart distribution. Using
this fact, the probability density function (pdf) p(γ0(R)) can
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Fig. 1. Illustration of the likelihood ratio-based test (16) for
SNR = 10 dB. The upper subplot shows the histogram of
γ0(R̃). The middle subplot shows the scatter plot of the RM-
SEs of the MUSIC DOA estimates versus γ0(R̃). The lower
subplot displays the cdf of γ0(R).

be computed [8]. In particular, we can compute the following
con dence interval:

P (γ0(R) ≤ α) =
∫ α

0

p(γ0(R)) dγ0 = Pα (15)

where P (·) stands for the cumulative distribution function
(cdf) and Pα is the probability to be selected to obtain the
threshold α.

After computing the threshold α, this value can be used in
lieu of γ0(R) in (13). Thus, we have the following likelihood
ratio-based quality assessment test that amounts to checking
whether the inequality

γ0(R̃) ≥ α (16)

is satis ed. If the inequality is not satis ed for any particular
DOA estimate from the estimator bank, then this estimate is
identi ed as outlier and is dropped. The nal estimate is then
formed in a regular way using only the “successful” estimates
that have passed the test [3].

5. SIMULATIONS

In our rst example, we assume a uniform linear array (ULA)
of M = 5 omnidirectional sensors spaced half a wavelength
apart, and L = 3 uncorrelated equipower sources located at
−25◦, 0◦ and 4◦ relative to the array broadside direction. We
also assume that N = 100. For each simulation run (with a
total number of runs being equal to 2000), the DOAs are es-
timated based on the conventional spectral MUSIC algorithm
and then the value of γ0(R̃) is calculated. The histograms of
this value are shown for SNR = 10 dB and SNR = 5 dB
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Fig. 2. Illustration of the likelihood ratio-based test (16) for
SNR = 5 dB. The upper subplot shows the histogram of
γ0(R̃). The middle subplot shows the scatter plot of the RM-
SEs of the MUSIC DOA estimates versus γ0(R̃). The lower
subplot displays the cdf of γ0(R).

in the top subplots of Figs. 1 and 2, respectively. The mid-
dle subplots of Figs. 1 and 2 display the scatter plots of root-
mean-square errors (RMSEs) of the MUSIC DOA estimates
versus γ0 for SNR = 10 dB and SNR = 5 dB, respectively.
The bottom subplots of Figs. 1 and 2 display the cdf’s of
γ0(R) (which are the same for both values of SNR as they
are scenario-independent).

Figs. 1 and 2 clearly verify that the developed outlier test
is adequate because the outlying estimates (that correspond to
the high RMSE values in the middle subplots) can be sorted
out by setting a proper threshold α. For example, from the
bottom subplots of Figs. 1 and 2 we can see that the choice
of Pα = 0.5 (which corresponds to the threshold value α =
0.88) is quite appropriate.

In our second example, we assume a ULA of M = 10
omnidirectional sensors spaced half a wavelength apart, and
L = 2 uncorrelated equipower sources located at 10◦ and 15◦

relative to the array broadside direction. We also assume that
the dimension of estimator bank is K = 20. Fig. 3 displays
the stochastic CRB along with the DOA estimation RMSEs
versus SNR for N = 100. Fig. 4 displays the similar values
versus N for SNR = 0 dB. The following methods are tested
in these two gures:

• the conventional spectral MUSIC estimator;

• the estimator bank method that uses the multiple can-
didate estimators of (8) and selects the best single esti-
mate yielding the largest stochastic likelihood function
value (referred as “ML-EB” in Figs. 3 and 4);

• the estimator bank method that uses the multiple can-
didate estimators of (8) and sorts out the outlying es-
timates using the proposed quality assessment method

II ­ 1067



10 5 0 5 10 15 20
10 2

10 1

100

101

102

SNR (dB)

Conventional Spectral MUSIC
ML EB
QA EB, Pα=0.5, with detected outliers
QA EB, Pα=0.5, without detected outliers

CRB

R
M

SE

Fig. 3. DOA estimation RMSE’s versus SNR.

with Pα = 0.5 (referred as “QA-EB, Pα = 0.5” in
Figs. 3 and 4). When computing the experimental RM-
SEs for this method, two cases have been considered.
In the rst case, all simulation runs have been used,
whereas in the second case, only those runs have been
taken into account that correspond to the nal DOA es-
timates classi ed as non-outlying estimates. The corre-
sponding curves are labelled as “with detected outliers”
and “without detected outliers”, respectively.

All the curves in Figs. 3 and 4 are averaged over 300 simula-
tion runs.

It can be observed from these gures that the proposed
modi cation of the estimator bank approach provides sub-
stantially lower SNR and number of snapshot thresholds as
compared to the MUSIC estimator and the earlier estimator
bank approach (ML-EB). Another advantage of the proposed
approach is that, according to the gures, it also predicts well
how reliable is the nal estimate.

6. CONCLUSIONS

A likelihood ratio-based quality assessment method has been
introduced to detect the outlying estimates in estimator bank-
based direction nding methods. Our simulations have de-
monstrated signi cant threshold performance improvements
of the proposed approach as compared to the earlier estimator
bank techniques.
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