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ABSTRACT

This paper presents a fast algorithm for joint estimation of the az-
imuth and elevation angles, and frequencies of the incoming sig-
nals using a hierarchical space-time decomposition (HSTD) tech-
nique. Based on the HSTD, the proposed algorithm makes use of a
sequence of one-dimensional (1-D) Unitary Estimation of Signal Pa-
rameters via Rotational Invariance Techniques (ESPRIT) algorithms
to estimate these parameters alternatively in a hierarchical tree struc-
ture. Also, in between every other 1-D Unitary ESPRIT, a temporal
ltering process or a spatial beamforming process is invoked to par-
tition the signals into ner groups to enhance the estimation accu-
racy and to alleviate the contaminated noise. Furthermore, the pair-
ing of these parameters is automatically determined. Simulation re-
sults show that the new algorithm provides satisfactory performance
but with drastically reduced computations compared with previous
works. Simulation results show that the new algorithm provides
satisfactory performance but with drastically reduced computations
compared with previous works.

Index Terms— 2-D DOA Estimation, array signal processing,
multidimensional signal processing.

1. INTRODUCTION

Joint estimation of azimuth and elevation angles, and carrier fre-
quencies of multiple sources is of importance in wireless commu-
nications. For example, these parameters can be applied to locating
the mobiles and to allocating pilot tones in space division multiple
access systems [1]. Also, a precise estimation of these parameters is
helpful in obtaining a better channel estimate and thus enhances the
system performance. Therefore, joint estimation of these parameters
has received lots of attention recently.

Various higher-dimensional subspace based algorithms such as
MUltiple SIgnal Classi cation (MUSIC) [2] or ESPRIT [3]-based
algorithms have been reported to jointly estimate these three pa-
rameters. The latter are in particular computationally attractive, as
they are free of higher-dimensional search on the azimuth-elevation-
frequency plane. For example, Haardt et al. [1] addressed a 3-
D unitary-ESPRIT to estimate these three parameters by extending
the computationally ef cient 1-D Unitary ESPRIT to 3-D scenar-
ios. Strobach [4] incorporated a total least squares phased averaging
method in the 3-D ESPRIT for signal subspace estimates to increase
the estimation accuracy. Despite the effectiveness of [1, 4], they
call for high computational overhead due to higher-dimensional data
stacking and eigendecomposition. On the other hand, an ef cient
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ESPRIT algorithm was recently considered in [5], which, however,
needs a special antenna array geometry.

In order to yield high estimation accuracy with low computa-
tional complexity, this paper proposes an HSTD-based algorithm for
joint estimation of the azimuth and elevation angles, and frequen-
cies of the incoming signals. The essence of the proposed algo-
rithm lies in a succinct combination of the parameter estimation and
temporal ltering/spatial beamforming processes, in which the pa-
rameters are estimated alternatively in a hierarchical tree structure.
More speci cally, the proposed algorithm makes use of a sequence
of 1-D Unitary ESPRIT algorithms to estimate these parameters in a
coarse- ne manner. In addition, to enhance the estimation accuracy,
in between every other 1-D ESPRIT algorithm, a temporal ltering
process or a spatial beamforming process is invoked to partition the
incoming signals into ner groups. Based on such an HSTD tech-
nique, not only the estimation accuracy is enhanced, but the pairing
of these parameters is automatically achieved without extra compu-
tations. Simulation results show that the new algorithm provides
satisfactory performance but with drastically reduced computations
compared with previous works.

2. SIGNAL MODEL

Consider a uniform rectangular array (URA) with M × N omni-
directional antennas. Assume that there areK uncorrelated narrow-
band sources {sk(t)}, each of which is carried by the frequency fk,
impinging on the URA, where each antenna is followed by a tapped
delay line with L time delay elements of delay Ts, as shown in Fig.1.

By sampling the output of each antenna at a rate fs = 1/Ts,
the observed signal at time t at the lth delay element output of the
(m, n)th antenna element can be expressed as

xmnl(t) =

K∑
k=1

sk(t)[e−j2π(M−1
2 −m)uke−j2π(N−1

2 −n)vk

·e−j2π(L−1
2 −l)fkTs ] + nmnl(t), (1)

where uk = d·fk
c

sin φk cos θk and vk = d·fk
c

sin φk sin θk, in
which φk and θk are the elevation and azimuth angles of the kth

signal, respectively, c is the wave propagation speed, and d is the
antenna spacing which is equal to half of the wavelength. nmnl(t)
denotes the white noise with power σ2n at the lth delay element of the
(m, n)th antenna. Note that for the employment of the Unitary ES-
PRIT, the reference point is set at the center of the URA and, without
loss of generality,M N , and L are all assumed to be even.
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3. PROPOSED FAST ALGORITHM

The proposed algorithm begins with the estimation of the frequen-
cies of the incoming signals, as in general we have more temporal
data to render a precise frequency estimate. To achieve this, we rst
constructXf (t) by stacking xmnl(t) as

Xf (t) = [x↙
11(t), . . . ,x

↙
M1(t)

... · · ·
...x↙
1N (t), . . . ,x↙

MN (t)] (2)

where x↙
mn(t) = [xmn1(t), · · · , xmnL(t)]T , m = 1, . . . , M , n =

1, . . . , N . Based on (1), it can be readily shown that

Xf (t) =

K∑
k=1

sk(t)gk(vk ⊗ uk)T +Nf (t) (3)

where gk = [e−j2π L−1
2 fkTs , · · · , ej2π L−1

2 fkTs ]T , uk=[e−j2π M−1
2 uk

,· · · ,ej2π M−1
2 uk ]T , vk=[e−j2π N−1

2 vk ,· · · ,ej2π N−1
2 vk ]T , and⊗ de-

note the Kronecker product [6]. Nf (t) is constructed by {nmnl(t)}
in the same way asXf (t) from {xmnl(t)} given in (2).

We then consider the frequency covariance matrix of Xf (t),
Rf

Δ
= 1

MN
E[Xf (t)XH

f (t)], with (·)H being the Hermitian oper-
atin. Based on (3),Rf can be shown as

Rf = GΛGH + σ2nI (4)

where we have the fact that (vk ⊗ uk)T (vk ⊗ uk)∗ = MN [6],
and that the noise nmnl(t) is white and independent with the im-
ping signals. G = [g1, ...,gK ] is the frequency signature matrix
and Λ = E[S(t)SH(t)], in which S(t) = diag{s1(t), ..., sK(t)}.
Note that Rf andG share the same column space and thus the 1-D
Unitary ESPRIT can be employed to estimate the frequencies.

However, the Unitary ESPRIT can not well resolve closely spaced
parameters [7], as the related signature matrix tends to be ill-conditioned.
To overcome this setback, we employ the HSTD technique [8, 9] to
partition the signals into smaller groups based on the resolvable car-
rier frequencies estimated above before proceeding to estimate u and
v. To achieve this, suppose that after carrying out the 1-D Unitary
ESPRIT with respect toRf , we obtain a set of frequency estimates,
say, {f̂1, . . . , f̂q}, where q is the number of resolvable frequencies,
we construct a set of temporal projection matrices Pfi given by

Pfi = I− Ḡi(Ḡ
H
i Ḡi)

−1ḠH
i (5)

for i = 1, . . . , q, where Ḡi = [ĝ1, . . . , ĝi−1, ĝi+1, . . . , ĝq]. We
then use these projection matrices to obtain a set of ltered data ma-
tricesXfi(t) = PfiXf (t), i = 1, · · · , q, which, based on the data
model in (3), can be re-written as

Xfi(t)
∼=

ri∑
j=1

si,j(t)ḡi,j(vi,j ⊗ ui,j)
T +PfiNf (t) (6)

where ri is the number of signals in the ith group, ḡi,j = Pfigi,j .
Note that the incoming sources except those in the ith group will be
approximately annihilated by such a temporal ltering process. and
that the ltered data matrix only contains signals whose frequencies
are close to f̂i but with diverse (u, v)’s.

Next, in order to estimate u by using the 1-D Unitary ESPRIT
with the ltered data matrix, we partitionXfi(t) into a set of L×M
sub-block matrices and then rebuild them intoXui(t) as

Xui(t) =
[
Xfi(t)(:, 1 : M)T

... · · ·
...Xfi(t)(:, (N−1)M+1 : NM)T

]

(7)

Based on (7), it can be readily shown thatXui(t) renders

Xui(t)
∼=

ri∑
j=1

si,j(t)ui,j(vi,j ⊗ ḡi,j)
T +Nui(t) (8)

whereNui(t) is constructed byPfiNf (t) in the same way asXui(t)
fromXfi(t) in (7), whose covariance matrix is given by

E[Nui(t)N
H
ui

(t)] = σ2i I (9)

where σ2i = L−q+1
L

, which implies that the noise components in
Nui(t) remains white and that the noise power is reduced after the
temporal ltering process.

Next, we compute the covariance matrices ofXui ,Rui

Δ
= 1

LN

E[Xui(t)X
H
ui

(t)]. Based on (8), it can be shown that

Rui = UiΛiU
H
i + σ2ni

I (10)

where we have used the fact that (vi,j ⊗ ḡi,j)
T (vi,j ⊗ ḡi,j)

∗ =
LN . Ui = [ui,1, ...,ui,ri ] is the signature matrix of ui,j and Λi =
E[SiS

H
i ], in which Si = diag{si,1(t), ..., si,ri(t)}. Carrying out

the 1-D unitary ESPRIT, we can get a set of estimates of u, say,
ûi,j , i = 1, 2, ..., q, j = 1, 2, ..., ρi, where ρi is the number of u’s
resolvable in the ith group. Thereafter, we use these estimates to
construct a set of spatial projection matrices given by

Pui,j = I− Ūi,j(Ū
H
i,jŪi,j)

−1ŪH
i,j (11)

for i = 1, . . . , q, j = 1, . . . , ρi, and Ūi,j = [ûi,1 ... ûi,j−1 ûi,j+1

... ûi,ρi ]. Pre-multiplying dataXui(t) by Pui,j yields a set of ner
group of data as

Xui,j (t)
∼=

zi,j∑
l=1

si,j(t)ūi,j,l(vi,j,l ⊗ ḡi,j,l)
T +Pui,jNui,j (t) (12)

where zi,j is the number of signals in the jth subgroup of the ith

group and ūi,j,l = Pui,jui,j,l. Note that the incoming sources,
except those in the (i, j)th groups, will be approximately eliminated
by Pui,j .

Note that the incoming signals in the (i, j)th subgroup, which
possess close u components (close to ui,j), will have diverse v’s. As
such, the v components for the signals in each subgroup can be well
resolved. To estimate v, we partition and re-stack the ltered matrix
Xui,j (t) by

Xvi,j (t) =
[
vec(Xui,j (t)(:, 1 : L)T )

... · · ·
... · · ·

...

vec(Xui,j (t)(:, (N − 1)L + 1 : NL)T
]T
(13)

where vec(·) denotes vector stacking operation [6]. Based on (13),
it can be shown thatXvi,j (t) renders

Xvi,j (t)
∼=

zi,j∑
l=1

si,j,l(t)vi,j,l(ūi,j,l ⊗ ḡi,j,l)
T +Nvi,j (t) (14)

whereNvi,j (t) is obtained from Pui,jNui,j (t) in the same way as
Xvi,j (t) from Xui,j (t) in (13). Next, we determine the covariance
matrix ofXvi,j , Rvi,j

Δ
= 1

LM
E[Xvi,j (t)X

H
ui,j

(t)]. Based on (14),
it can be shown that

Rvi,j = Vi,jΛi,jV
H
i,j + σ2i,jI (15)
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where σ2i,j = (L−q+1)(M−ρi+1)
LM

σ2, Vi,j = [vi,j,1, ...,vi,j,zi,j ] is
the signature matrix of vi,j,l, and Λi,j = E[Si,jS

H
i,j ], in which

Si,j = diag{si,j,1(t), ..., si,j,zi,j (t)}. Along the same line as
above, the 1-D Unitary ESPRIT can be applied to estimate v.

Note that the f ’s and u’s estimated above are rather rough when
these parameters are closely spaced. Consequently, we can get a
more precise estimate of f ’s and u’s by carrying out the 1-D Uni-
tary ESPRIT again based on the ner groups of data. For this, we
construct another set of spatial projection matrices given by

Pvi,j,l = I− V̄i,j,l(V̄
H
i,j,lV̄i,j,l)

−1V̄H
i,j,l (16)

where V̄i,j,l = [v̂i,j,1 ... v̂i,j,l−1 v̂i,j,l+1 ... v̂i,j,zi,j ], and then pre-
multiplyXvi,j (t) by the projection matrixPvi,j,l to renderXvi,j,l(t)
= Pvi,j,lXvi,j (t), which will annihilate the impinging signals those
do not belong to the (i, j, l)th subgroup. Based on (13), the new data
matrix can be expressed as

Xvi,j,l(t)
∼= si,j,l(t)v̄i,j,l(ūi,j,l ⊗ ḡi,j,l)

T +Nvi,j,l(t) (17)

where v̄i,j,l = Pvi,j,lvi,j,l andNvi,j,l(t) = Pvi,j,lNvi,j (t). For a
more accurate estimation of f , we partitionXvi,j,l(t) intoM N×L
sub-block matrices and stack them as

Xui,j,l(t) =
[
vec (Xvi,j,l(t)(:, 1 : L))T

... · · ·
... · · ·

vec (Xvi,j,l(t)(:, (M − 1)L + 1 : ML))T
]T

= si,j,l(t)ūi,j,l(v̄i,j,l ⊗ ḡi,j,l)
T +Nui,j,l(t) (18)

where Nui,j,l(t) is obtained from Nvi,j,l(t) in the same way as
Xui,j,l(t) fromXvi,j,l(t) in (18). Next, we partition the data matrix
Xui,j,l(t) into N M × L sub-block matrices and stack them as

Xfi,j,l(t) =
[
Xui,j,l(t)(:, 1 : L)

T ... · · ·
... · · ·

Xui,j,l(t)(:, (N − 1)L + 1 : NL)
T ]

∼= si,j,l(t)ḡi,j,l(v̄i,j,l ⊗ ūi,j,l)
T +Nfi,j,l(t) (19)

Note that ḡi,j,l in (19) does not possess Vandermonde struc-
ture. To overcome this setback, we utilize the fact that ḡi,j,l(ūi,j,l ⊗
v̄i,j,l)

T belongs to the subspace spanned by the normalized eigen-
vector efi,j,l associate with the largest eigenvalue of covariance ma-
trix Rfi,j,l , where Rfi,j,l

Δ
= 1

MN
E[Xfi,j,l(t)X

H
fi,j,l

(t)]. There-
fore, (I − efi,j,le

H
fi,j,l

)Pfigi,j,l(ūi,j,l ⊗ v̄i,j,l)
T = 0. gi,j,l be-

longs to the subspace spanned by the Denote Ξfi,j,l = I − (I −
efi,j,le

H
fi,j,l

)Pfi andGi,j,l = [Ḡi gi,j,l], it can be shown that

Ξfi,j,l = Gi,j,l(G
H
i,j,lGi,j,l)

−1GH
i,j,l (20)

Note that Gi,j,l retains the Vandermonde structure and shares the
same column space as Ξfi,j,l , so the 1-D Unitary F-ESPRIT can
be utilized and we can get more precise estimates of f ’s. Similarly,
working withXui,j,l results in more precise estimates of ui,j,l’s.

To sum up, the overall steps of the proposed tree-structured 1-D
Unitary ESPRIT based algorithm can be summarized as follows:
Step 1: (Rough Frequency Estimation) Estimate the covariance
matrix R̂f = 1

SMN

∑S
s=1Xf (ts)X

H
f (ts), where S is the number

of snapshots, and then invoke the 1-D Unitary ESPRIT to yield a set
of group frequency estimates {f̂1, ..., f̂q}, where q is the number of
resolvable frequencies.

Step 2: (Temporal Filtering) Employ {f̂1, ..., f̂q} to construct the
projection matrix Pfi by (5) and then use Pfi to obtain the ltered
data matrixXfi(t) = PfiXf (t), i = 1, ..., q.
Step 3: (Rough Estimation of u) Stack the dataXfi(t), i = 1, ..., q,
based on (6) and then estimate the covariance matrix R̂ui = 1

SLN∑S
s=1Xui(ts)X

H
ui

(ts). Thereafter, use the 1-D Unitary ESPRIT to
estimate the u’s, {û1,1, . . .,û1,ρ1 ,. . .,ûq,1, . . .,ûq,ρq}, where ρi, i =

1, ..., q, is the number of u’s resolvable in the ith group.
Step 4: (Spatial Beamforming (I)) Employ {û1,1} obtained above
to construct the projection matrix Pui,j by (11) and then use Pui,j

to obtain the ltered data matrix Xui,j (t) = Pui,jXui(t), i =
1, . . . , q, j = 1, . . . , ρi.
Step 5: (Estimation of v) Re-stack data Xui,j (t) based on (13)
to form Xvi,j (t) and then use Xvi,j (t) to estimate the covariance
matrix R̂vi,j = 1

SLM

∑S
s=1Xvi,j (ts)X

H
vi,j

(ts). Thereafter, use
the 1-D Unitary ESPRIT to estimate the v’s to get {v̂i,j,l}.
Step 6: (Spatial Beamforming (II)) Employ {v̂i,j,l} to construct
the projection matrices Pvi,j,l as given in (16), then use Pvi,j,l

to obtain ltered data matrix Xvi,j,l(t) = Pvi,j,lXvi,j (t), i =
1, . . . , q, j = 1, . . . , ρi, l = 1, . . . , zi,j .
Step 7: (Precise u and Frequency Estimation) Partition and re-
stackXvi,j,l(ts) as (18) and (19) to obtainXui,j,l(ts) andXfi,j,l(ts),
respectively. Estimate the covariance matrix R̂fi,j,l = 1

SMN

∑S
s=1

Xfi,j,l(ts)X
H
fi,j,l

(ts), and utilize the normalized eigenvector êfi,j,l

corresponding to the largest eigenvalue and the projection matrix
Pfi to form Ξfi,j,l = I − (I − efi,j,le

H
fi,j,l

)Pfi . Use the 1-D
Unitary ESPRIT to obtain precise frequency estimates from Ξ. Fol-
lowing the above procedures based on Xui,j,l(ts) renders precise
estimates of u. Note that since every subgroup in this step only
contains one signal, the pairing process is automatically achieved.
Finally, we can obtain the estimate of elevation and azimuth angles,
φ̂ = sin−1 c

f̂d

√
û2 + v̂2 and θ̂ = tan−1 v̂

û
.

Note that the number of groups, q, the number of signals in
each group, ρi, and the number of signals in each subgroup, zi,j

are known or have been perfectly estimated, say by the AIC or MDL
criterion addressed in [10]. Based on the above steps, the total num-
ber of real multiplications required by the proposed algorithm is then
about 4LMNSK(L+M+N) if we assume that S ≥ M, N, L >
K.

4. SIMULATIONS AND DISCUSSIONS

Some simulations are conducted in this section to assess the pro-
posed approach. Assume that there are K = 4 users, and they are
received by a 6 × 6 (M = N = 6) element URA which spaced a
half wavelength apart, where each antenna is followed by a tapped
line with L = 12 delay elements and the sampling frequency is
fs = 400 MHz. The azimuth and elevation angles of the users are
[63, 29, 75, 63]o and [23, 44, 46, 13]o, respectively, with the center
frequencies [100, 103, 103, 180] MHz. S = 200 symbols are em-
ployed to estimate the temporal and spatial covariances. For each
speci c SNR, 200 Monte Carlo trials are carried out. The compari-
son of the root-mean-square-error (RMSE) of frequencies, elevation
and azimuth angles based on the proposed algorithm and [1] and [4]
is shown in Figs. 2, 3 and 4, respectively, where the Cramer-Rao
lower bound (CRLB) is also provided for reference.

We can note from Figs. 2-4 that the proposed algorithm pro-
duces close performance as the algorithms in [1, 4] in all of the
estimates. Meanwhile, [1] and [4] need to stack the data to si-
multaneously estimate these parameters and thus roughly require
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(6S + 2
3
MNL)M2N2L2 and (8S + 8

3
MNL + 34K)M2N2L2

real multiplications, respectively, which are far more computation-
ally expensive than the proposed algorithm. In contrast, the proposed
algorithm only involves 1-D unitary ESPRIT and thus the computa-
tional overhead is substantially reduced.
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Fig. 1. Uniform rectangular array with tapped delay lines
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Fig. 2. Comparison of frequency estimates
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Fig. 3. Comparison of elevation angle estimates.
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Fig. 4. Comparison of azimuth angle estimates.
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