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ABSTRACT

This paper deals with the problem of estimating the Directions-
of-Arrival (DOA) of multiple wideband sources using an ar-
ray of sensors. While a variety of estimation techniques have
been proposed in the literature, the Maximum-Likelihood (ML)
DOA estimator has been shown to have superior performance
under many challenging environments. In this paper, we pro-
pose a novel implementation for ML DOA estimator based
on the Cross-Entropy (CE) method. Simulation results show
the CE algorithm converges to the Cramer-Rao Bound (CRB)
in all scenarios within several iterations and the convergence
speed is insensitive to the coherence of sources.

Index Terms— Cross-Entropy, DOA estimation

1. INTRODUCTION

Over the past thirty years, researchers have been interested in
developing array signal processing techniques for DOA esti-
mation and source localization. While many high resolution
algorithms have been proposed in the literature, the ML es-
timator exhibits many advantages over other estimators. For
example, TDOA based methods [1] in general assume sin-
gle source in the data model, and therefore cannot be used
to resolve multiple sources. Subspace methods such as MU-
SIC [2] possess multiple sources DOA estimation capabili-
ties, but require the source waveforms to be incoherent and
quasi-static. The ML estimator, on the other hand, gives ro-
bust performance under these challenging scenarios and its
performance asymptotically achieves the CRB.

The naive implementation of the ML estimator requires
multiple dimensional grid search, since the ML metric is a
nonlinear function of DOAs. The computational burden of
such implementation grows exponentially in the number of
sources which is impractical in many applications. Various
iterative optimization schemes have been proposed to reduce
the complexity. Most of them require a good initial point for
the algorithms to converge to the optimal solution, and no
global convergence is guaranteed in general.
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In this paper, we propose a novel wideband DOA estima-
tion algorithm based on the CE method [3]. A similar ap-
proach has been proposed for narrowband sources [4], while
our algorithm is focused on wideband applications. By using
the CE method, the ML criterion is translated into a stochastic
approximation problem which can be solved ef ciently. The
performance of the proposed algorithm under both coherent
and incoherent scenarios has been studied in this work, and
the simulation results show that CE converges to the CRB in
both scenarios with a comparable rate.

2. MAXIMUM-LIKELIHOOD CRITERION

In this section, we review the ML criterion for multiple sources
DOA estimation [5, 6, 7].

Let there be M wideband sources in the far- eld of a P -
element randomly distributed array. For simplicity, we as-
sume the sources and the array lie in the same plane, and θm

denotes the DOA of the mth source with respect to the cen-
troid of the array, where m = 1, · · · ,M . Without loss of gen-
erality, we set the array centroid to be at the origin, and the
position of each sensor is at rp = [rp cos(φp), rp sin(φp)]T ,
p = 1, · · · , P . With this setting, the time-delay of the mth
source to the pth sensor relative to the centroid can be ex-
pressed as t

(m)
p = rp cos(θm − φp)/v, where v is the speed

of acoustic wave. The received waveform by the pth sensor at
time n can then be expressed as

xp(n) =
M∑

m=1

s(m)(n− t(m)
p ) + wp(n) (1)

for n = 0, · · · , N − 1. Here N denotes the length of the
received waveform, s(m)(n) is the signal, and wp(n) is mod-
elled as additive white Gaussian noise with variance σ2.

For the ease of derivation and analysis, the received wave-
form is transformed into the frequency domain via DFT, where
a narrowband model is applied to each frequency bin. This
transformation introduces edge effect due to the nature of
DFT, but the effect is negligible when N is suf ciently large.

After performing N -point unitary DFT transformation to
xp(n), we can obtain the following data model:

X(ωk) = D(ωk,Θ)S(ωk) + W(ωk), (2)
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for k = 0, · · · , N−1. Here X(ωk) = [X1(ωk), · · · , XP (ωk)]T

denotes the array data spectrum, and Θ = [θ1, · · · , θM ]T is
the source DOA vector. The steering matrix is a function
of both Θ and ωk, and can be expressed as D(ωk,Θ) =
[d(1)(ωk, θ1), · · · ,d(M)(ωk, θM )], where d(m)(ωk, θm) =
[d(m)

1 (ωk, θm), · · · , d
(m)
p (ωk, θm)]T . Assume the response of

the pth sensor is ap(ωk, θ), then d
(m)
p can be expressed as

d
(m)
p (ωk, θm) = ap(ωk, θm)e−j2πkt(m)

p /N . We denote S(ωk) =
[S(1)(ωk), · · · , S(m)(ωk)]T as the source spectrum and W(ωk)
as the noise spectrum. Throughout this paper, we denote the
superscript T as the transpose and H as the complex conjugate
transpose.

Since W(ωk) is also i.i.d. Gaussian, the likelihood func-
tion of {Θ,S(ω1), · · · ,S(ωN/2)} is given by

L(Θ,S(ω1), · · · ,S(ωN/2)) =
1

πPN/2σPN
·

exp{(−1/σ2)
N/2∑

k=1

‖X(ωk)−D(ωk,Θ)S(ωk)‖2} (3)

Taking logarithm of L(Θ,S(ω1), · · · ,S(ωN/2)), replacing S(ωk)
by its ML estimate, and omitting the scaling factor indepen-
dent of Θ, we have the following ML metric expression:

J(Θ) =
N/2∑

k=1

tr{P(ωk,Θ)R(ωk)} (4)

where P(ωk,Θ) = D(ωk,Θ)D†(ωk,Θ) is the projection
matrix that projects to the signal subspace, and R(ωk) =
X(ωk)XH(ωk). Finally, the ML criterion is expressed by:
Θ̂ML = arg maxΘ J(Θ).

3. INTRODUCTION TO CROSS-ENTROPY
METHOD

The CE method was rst proposed by Rubinstein [3] in solv-
ing rare event estimation problems, and was soon realized that
it can be generalized to solving both combinatorial and con-
tinuous optimization problems. In this section, we review the
CE method and apply it to our DOA estimation problem.

Let γ∗ denote the maximum of our ML metric, J(Θ)
over the M dimensional rectangle. First, we randomize our
original deterministic problem by de ning a family of pdfs
{f(·,v),v ∈ V} from which Θ is drawn; v is the parameter
of the pdf f(·,v) and V is the set in which v lies. Then we
associate the original problem with a rare-event probability
estimation problem:

�(γ) = Pv(J(Θ) ≥ γ) = Ev{H(Θ, γ)}, (5)

where H(Θ, γ) is 1 if J(Θ) ≥ γ, and 0 otherwise. Here �(γ)
is the rare-event probability for some γ close to γ∗. Pv and
Ev denote the probability and expectation of the rare event

{J(Θ) ≥ γ}. Applying the importance sampling technique
to eq. 5, we can approximate �(γ) by

�̂(γ) =
1

Ns

Ns∑

n=1

H(Θ(n), γ)
f(Θ(n),v)
g(Θ(n))

, (6)

where Θ(n) is the nth sample drawn from some proposal dis-
tribution g(Θ), and Ns is the number of samples used in the
Monte Carlo approximation. It is easy to see that the optimal
proposal distribution g∗(Θ) equals to H(Θ, γ)f(Θ,v)/�(γ),
since with this choice the variance of �̂(γ) is zero. However,
g∗ depends on �(γ), which is unknown. Therefore the optimal
proposal distribution is usually unavailable in practice.

Since g∗ is unknown in general, the CE algorithm es-
timates g∗ by constraining the proposal distribution to the
same family of f(.,v) and seeks the optimal v such that the
Kullback-Leibler distance (cross-entropy) between g∗ and f(.,v)
is minimized.

It can be shown that the optimal parameter of v, denoted
by v∗ can be estimated by solving its stochastic counterpart
[3]:

v∗ = max
v

1
Ns

Ns∑

n=1

H(Θ(n), γ) ln f(Θ(n),v) (7)

Note that when γ is very close to γ∗, most of the H(Θ(n), γ)
values are zero, which makes the estimation in eq. 7 meaning-
less. To overcome this problem, a two-phased CE procedure
has been proposed [3]. In this procedure, the parameter v and
level γ are estimated and updated gradually and converge to
v∗ and γ∗ that solve eq. 7.

4. CE ALGORITHM FOR DOA ESTIMATION

Since the likelihood function eq. 3 is Gaussian, a natural
choice of f(Θ,v) is the Gaussian pdf. For simplicity, we
choose f(Θ,v) to have a decoupled form in each dimension
which can expressed by the following equations:

f(θ,v) =
M∏

m=1

fm(θm,vm) (8)

fm(θm,vm) =
1√

2πσ2
m

e
− (θm−μm)2

2σ2
m (9)

where v = [v1, · · · ,vM ]T , and vm = [μm, σ2
m]T . The CE-

procedure contains two phases: Adaptive updating of γ and
adaptive updating of v.

The updating procedure for γ(t): For a xed v̂(t − 1),
estimate γ(t) as the sample (1− ρ)-quantile of J(Θ).

The updating procedure for v(t): For a xed γ(t) and
v̂(t − 1), solve eq. 7 using the prede ned f(Θ,v), we then
have the following update equations:

μ̂m =
∑Ns

n=1 H(Θ(n), γ)θ(n)
m∑Ns

n=1 H(Θ(n), γ)
(10)

II  1058



σ̂2
m =

∑Ns

n=1 H(Θ(n), γ)(θ(n)
m − μ̂m)2

∑Ns

n=1 H(Θ(n), γ)
(11)

Eq. 10 and 11 suggest the estimated parameters as the sam-
pled mean and variance of those samples that give ML-metric
above the threshold, γ. Since the DOA is circular in nature,
the above de nition needs to be modi ed to account for the
modulus of 2π. As a result, we use the circular sample mean
(eq. 12) and circular sample variance (eq. 13) in our proposed
algorithm. Note a scaling factor of π2/3 is used in eq. 13 such
that it gives the same value as the sample variance de nition
when the DOAs are uniformly distributed within [0, 2π).

The proposed CE-procedure for DOA estimation is sum-
marized as follows:

1. Initialize parameters ρ, Ns, α, β, and v̂(0). v̂(0) can
be chosen to incorporate the a priori knowledge of the
DOAs. Set t = 1.

2. Generate Ns samples Θ(1), · · · ,Θ(Ns) from the pro-
posal distribution f(., v̂(t − 1)) de ned in eq. 8 and
9.

3. Compute J(Θ(1)), · · · , J(Θ(Ns)). Set γ̂(t) as the or-
der statistic J�(1−ρ)Ns�.

4. Use the same samples Θ(1), · · · ,Θ(Ns) to estimate the
parameters ṽ(t) = [μ̃(t)T , σ̃2(t)T ]T through the fol-
lowing update equations.

μ̃m(t) = �
∑Ns

n=1 H(Θ(n), γ̂(t)) exp (jθ(n)
m )

∑Ns

n=1 H(Θ(n), γ̂(t))
(12)

σ̃2
m(t) =

π2

3
{1−

∑Ns

n=1 H(Θ(n), γ̂(t)) cos(θ(n)
m − μ̃(t))

∑Ns

n=1 H(Θ(n), γ̂(t))
}

(13)

5. There are occasions that the algorithm might degener-
ate too quickly and converge to a suboptimum solution.
This problem can be mitigated by smoothing the para-
meters, where 0 ≤ α, β ≤ 1.

μ̂m(t) = � {αejμ̃m(t) + (1− α)eμ̂m(t−1)} (14)

σ̂2
m(t) = βσ̃2

m(t) + (1− β)σ̂2
m(t− 1) (15)

6. Stop the algorithm when it converges; otherwise set t =
t + 1 and reiterate from step 2.

5. SIMULATION RESULTS

In this section, we present the simulation results of the pro-
posed algorithm. An 8-element Uniform Circular Array (UCA)
is assumed in the simulation to estimate the DOAs of three
wideband sources which are extracted from real human speech
recordings (Fig. 1) sampled at 16kHz. The true DOAs are set
to be at DOA1=π/6, DOA2=π/2, and DOA3=π, and the ra-
dius of the UCA is set to be 0.25m. The effective SNR of all
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Fig. 1. Acoustic waveform of a human speech.

three sources are set at 20dB. We initialize the CE algorithm
by setting μ̂(0) to the value obtained from the same initializa-
tion procedure described in [8], and σ̂m(0) is set to be π/6.
The initialization procedure is rst proposed for Alternating
Projection (AP) algorithm, and global convergence has been
observed through extensive simulations [8]. When used as an
initialization for CE, it places the generated samples at high
likelihood regions and therefore allows a more ef cient CE-
implementation.

To study the performance of the proposed CE algorithm,
the Mean-Square-Errors (MSE) of the estimated DOAs have
been computed over 500 Monte Carlo simulations. The MSEs
are then compared with their CRBs. Our data model (eq. 2)
treated the DOAs and the sources spectra, S(m)(ωk) as un-
known quantities, and therefore the derived CRBs include
penalty factors that depend on the array geometry, the DOA
spacings among the sources, and the source spectra. Two sce-
narios have been investigated throughout the simulation:

Scenario 1 (Incoherent sources): In the rst scenario,
The source waveforms for source 1, 2, and 3 are extracted
from Frame A, B, and C of Fig. 1 respectively and the radius
of the UCA is set to 0.15m.

Fig. 2a shows the steered-response-power (SRP) of a con-
ventional beamformer. Three local maximums centered around
the true DOAs can be observed. In this scenario, the steered
beamformer gives reasonable results, although the estimated
DOAs are still biased by the other interfering sources. The
proposed CE-implementation of a ML estimator, on the con-
trary, achieves the CRBs of all three DOAs within 7 iterations
(Fig. 2b, 2c, 2d).

Scenario 2 (Coherent sources): In real-applications, mul-
tipath effect is one of the biggest issues that degrades the per-
formance. In our data model, the multipath effect can be con-
sidered as the presence of multiple coherent sources. In sce-
nario 2, we simulate such condition by choosing the source
waveforms all extracted from Frame A of Fig. 1.

Again, Fig. 3a shows the SRP of a conventional beam-
former. Three local maximums centered around 15, 52, 84
degrees can be observed. Clearly DOA1 and DOA2 can not
be estimated accurately by a conventional beamformer under
this scenario while our proposed algorithm again converges
to the CRBs of all DOAs within 7 iterations (Fig. 3b, 3c, 3d).
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Fig. 2. Simulation results under scenario 1 (Ns = 200, ρ =
0.05, α = 1, β = 1): a) SRP of a conventional beamformer.
b) MSE of DOA1. c) MSE of DOA2. d) MSE of DOA3

Comparing to subspace based approaches, the proposed
algorithm is much robust. Fast convergence is observed in
both scenarios using a small number of samples, and the com-
plexity of CE is comparable to AP according to our empiri-
cal experiences. A more detailed comparison among CE and
other deterministic implementations of MLE will be left to
our future work.

6. CONCLUSIONS

In this paper, we propose a CE-based implementation for wide-
band sources DOA ML estimator. The performance of the
CE-algorithm has been studied through computer simulations.
While the performance of many subspace-based methods de-
grades signi cantly when sources are coherent, simulation re-
sults show that the CE-algorithm converges to the CRB for
both coherent and incoherent sources scenarios at a compara-
ble rate. These numerical studies demonstrate the ef ciency
and robustness of the proposed algorithm, and suggest the
practicality for applications in strong multipath environments.
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