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ABSTRACT

Partly-filled nonuniform linear arrays (PFNLA) are presented and
DOA estimation problem for multipath signals is investigated. A
new approach is proposed for DOA estimation in nonuniform linear
arrays (NLA) based on array interpolation. A Wiener formulation is
used to improve the condition number of the mapping matrix as well
as the performance for noisy observations. An initial DOA estimate
is obtained by using the uniform part of the PFNLA. This initial es-
timate is used in array interpolation and a new covariance matrix is
found which improves the DOA estimation significantly. Nonitera-
tive and iterative algorithms are developed for the DOA estimation in
multipath. Proposed approach overcomes some of the limitations of
the conventional array interpolation. It is shown that the DOA per-
formance is close to the CRB and the method is robust for a variety
of source and DOA scenarios.

Index Terms— Direction of arrival estimation, nonuniformly
spaced arrays, music, array signal processing, multipath

1. INTRODUCTION

NLA are shown to be effective in direction of arrival (DOA) estima-
tion [1]. Especially they allow better resolution for the same num-
ber of array elements compared to the uniform linear arrays, (ULA).
It is well known that when the source signals are coherent, many
subspace based DOA estimation methods fail, including the com-
putationally efficient root-MUSIC algorithm. Coherent signals are
observed when there are multipath reflections. The solution to the
DOA problem in multipath signals is found by forward-backward
spatial smoothing [2] in ULA. Forward-backward spatial smoothing
requires some kind of shift invariant sub-array structure such as the
ULA structure and it cannot be used in arbitrary array geometries
such as NLA. A common approach to solve the problem in arbitrary
arrays is to use array interpolation to map the real array to a virtual
ULA [3].

Array interpolation [4] is an effective technique to map the ac-
tual array geometry to a desired virtual array structure. One of the
important applications is to convert an array manifold to a uniform
linear array form in order to take advantage of the Vandermonde
structure, which allows the use of the fast subspace methods [3].
In the conventional array interpolation, mapping matrix requires the
solution of a linear equation which may be ill-conditioned in cer-
tain cases [5]. A further difficulty is the requirement to define an
angular sector where all the sources are assumed to be inside. As
the angular sector widens, the mapping accuracy decreases due to
the least-squares solution of the mapping equation. In this paper, we
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overcome the above problems by considering first a Wiener formu-
lation of the mapping relation. This solution improves the condition
number of the mapping matrix. In addition, mapping accuracy im-
proves for noisy observations. Furthermore, it allows more sensors
in the virtual array than the real array. We also use an initial DOA es-
timate in order to remove the dependency on an angular sector. The
use of initial DOA estimate also improves the mapping accuracy in
array interpolation.

In this paper, we define PFNLA structures which form a subset
of nonuniform linear arrays. We use PFNLA together with the pro-
posed DOA estimation algorithms when the source signals are co-
herent. The proposed approach also works for noncoherent sources
as well. PFNLA is a NLA which has an ULA and a NLA part. This
hybrid form allows one to use forward-backward spatial smoothing
[2] to obtain an initial DOA estimate by using the root-MUSIC al-
gorithm. Array interpolation is used together with this initial esti-
mate to obtain a better covariance matrix estimate. This new co-
variance matrix results significantly better DOA estimate compared
to the initial estimate. In addition to this noniterative approach, we
also present the iterative method which is simply the repetition of
the noniterative algorithm by using the improved DOA estimates.
Iterative approach results considerable improvement over the non-
iterative approach especially at low SNR. It turns out that PFNLA
and the proposed DOA estimation algorithms are very effective in
case of multipath signals and they perform consistently as the source
number and directions change.

2. PROBLEM FORMULATION

We assume that there are n narrowband plane waves impinging on
a NLA with DOA’s θ = [θ1, . . . , θn]. NLA has M sensors located
at integer multiples of unit distance d which is less than half the
wavelength, d < λ/2. Therefore sensor positions, di, are integer
values, d = [0 d2 d3 . . . dM ], in units of d.

In this paper, we present the PFNLA to solve the DOA problem
in multipath signals.

Definition: (PFNLA) Partly-filled nonuniform linear array is the
combination of two linear arrays, namely a uniform linear array with
M1 sensors and a nonuniform linear array with M2 sensors.

An example of such an array is d8 = [0 1 2 3 4 8 10 11] where
M1 = 5, M2 = 3 and M = M1 + M2. Let Mα = dM + 1 be the
number of elements in an equivalent ULA with the same aperture
as the PFNLA. Ideally, it is desired to map the covariance matrix
of the PFNLA to this ULA and use the advantage of the forward-
backward spatial smoothing [2] proposed for the ULA. We assume
the narrowband model for the received signal, ȳ(t) ∈ CM×1,

ȳ(t) = Ās(t) + v̄(t) (1)
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where Ā = [ā(θ1) . . . ā(θn)] ∈ CM×n is the manifold matrix for
the NLA. Each term in Ā is given as,

ā(θi) =

[
1 exp(j2π

d2

λ
sin θi) . . . exp(j2π

dM

λ
sin θi)

]T

(2)

s(t) ∈ Cn×1 is the signal vector which represents a stationary, zero-
mean random process uncorrelated with noise. v̄(t) ∈ CM×1 is
the additive white noise with covariance matrix, Rv̄ = σ2

vI. For
ULA, the manifold matrix A = [a(θ1) . . . a(θn)] ∈ CMα×n has
Vandermonde form with,

a(θi) =

[
1 exp(j2π

d

λ
sin θi) . . . exp(j2π(Mα − 1)

d

λ
sin θi)

]T

(3)
The received signal in this case is, y(t) = As(t) + v(t). The co-
variance matrix for ULA, R ∈ CMα×Mα , is

R = ARsA
H + σ2

vI (4)

If we assume that N snapshots are given, the M × M and Mα ×
Mα sample covariance matrices for the NLA and ULA are given
respectively as,

R̄ =
1

N

N∑
t=1

ȳ(t)ȳH(t), R̂ =
1

N

N∑
t=1

y(t)yH(t) (5)

Note that ȳ(t) and R̄ can be obtained from y(t) and R̂ by selecting
the appropriate rows and columns through a binary selection matrix.
Let B be a M × Mα matrix where the only nonzero element in
its jth row is at dj , j = 1, . . . , M . Then Ā = BA and ȳ(t) =
BAs(t) + σ2

vI.
In our case, the problem is to find an estimate of the source

DOA’s with a fast subspace algorithm such as root-MUSIC given
the observed samples, ȳ. This problem can be solved satisfacto-
rily only when we have a good estimate of the covariance matrix,
R. For nonredundant and partially augmentable arrays, finding an
estimate of covariance matrix requires some of the missing lags to
be completed. For PFNLA, the same task corresponds to finding a
better covariance matrix estimate than R̄. It turns out that the type
of processing to obtain a good covariance matrix estimate makes an
important difference in DOA estimation performance as it will be
shown in the following parts of this paper.

3. ARRAY INTERPOLATION FOR NOISY OBSERVATIONS

Array interpolation is a well known technique in DOA estimation
[4], [5], [6]. It is used to map the covariance matrix of a real array
to a virtual array. The real array usually has a circular geometry
whereas the virtual array is a ULA [3], [6]. This mapping allows one
to take advantage of the special Vandermonde structure of the ULA
array manifold in order to use the fast subspace algorithms such as
root-MUSIC.

Array interpolation is done by considering an interpolation sec-
tor θ̃ ∈ [θb , θf ] where the source DOA’s are all assumed to be inside
this sector. If there is a source outside this sector, there is no guaran-
tee that it will be identified correctly. In general, interpolation sector
is uniformly divided with Δθ intervals and array manifold is gener-
ated by considering θ̃i = iΔθ, i = 1, . . . , (θf − θb)/Δθ + 1. Let

A(θ̃) and Ā(θ̃) be the manifold matrices for ULA and NLA respec-
tively. The mapping matrix for the conventional array interpolation
[4], [5], T, is given as,

T = A(θ̃)Ā(θ̃)H
(
Ā(θ̃)Ā(θ̃)H

)−1

(6)

T is found as the least-squares solution (LS) and as the interpo-
lation sector increases the accuracy of the mapping decreases. On the
other hand, interpolation sector should be kept as large as possible to
cover most of the looking directions. This contradiction is one of the
limitations of array interpolation. Multiple sector approach [3] and
bias reduction [6] may be used to overcome this problem to some ex-
tend. In this paper, we will use initial DOA estimates to remove the
sector dependency. Another problem in finding T is the condition
number of Ā(θ̃)Ā(θ̃)H [5]. In conventional array interpolation, the
number of elements in the virtual array is less than or equal to the
real array. Even in this case, Ā(θ̃)Ā(θ̃)H may be ill-conditioned for
certain angular sectors [5] and different techniques should be used
to find an appropriate mapping matrix. In the following part, we will
present the Wiener solution for array interpolation which improves
the condition number as well as the DOA performance for noisy ob-
servations.

Given ȳ = Ās + v̄ for NLA, we need to find y̌ = As of
the ULA. If we define the error as e = y̌ − Tȳ and find the MSE
optimum solution for T ∈ CMα×M , we obtain,

T = A(θ̃)RsĀ(θ̃)H
(
Ā(θ̃)RsĀ(θ̃)H + Rv̄

)−1

(7)

If we assume Rv̄ = σ2
vI and Rs = σ2

sI for uncorrelated source
signals, we have,

T = σ2
sA(θ̃)Ā(θ̃)H

(
σ2

sĀ(θ̃)Ā(θ̃)H + σ2
vI

)−1

(8)

Note that the assumption Rs = σ2
sI might be seen restrictive since

in practice source signals are usually correlated. It turns out that
the mapping error due to the violations of this assumption is small
compared to the errors due to finite length signals and noise which
dominate the MUSIC performance [7]. Furthermore conventional
array interpolation does the same assumption implicitly.

4. DOA ESTIMATION FOR MULTIPATH SIGNALS

One of the most serious problems in DOA estimation is the multipath
problem. Multipath occurs when one or more signal reflections are
received by the sensors. Therefore a source signal in one direction
is a scaled version of another with a different direction, i.e., sj(t) =
rejφsi(t) for some i, j. In this case, we have coherent signals in
the sensors and signal covariance matrix Rs is singular. It turns out
that phase term φ in the multipath signal is more problematic than
the magnitude scaling. Therefore φ should be evaluated in 2π range
in order to have a good idea of the algorithm resilience to multipath
signals.

Most of the DOA estimation algorithms including root-MUSIC
completely fail in multipath scenario. Maximum likelihood meth-
ods can solve this problem but they are computationally expensive.
Fortunately forward-backward spatial smoothing [2] can be used to
decorrelate the signals and estimate the true DOA’s. However this
method requires shift invariant subarray structure as in ULA and
therefore cannot be applied to a large number of array geometries
including the NLA presented in the previous section. Array interpo-
lation is used to map these geometries to ULA to take advantage of
the forward-backward smoothing technique.

It turns out that NLA’s are affected more than the other types of
array geometries in case of multipath signals. In fact, they fail com-
pletely in this case. Some solutions to this problem are proposed [8]
but they require large number of array elements and they are com-
putationally expensive. In this respect a simple and robust algorithm
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for NLA is important. A useful NLA structure and algorithm should
perform sufficiently well for a variety of cases and source directions.

4.1. Finding an initial DOA estimate

In order to have a sector independent array interpolation, we need
to have an initial estimate of the source angles. In this paper, we
propose to find this initial estimate by using a hybrid array structure,
PFNLA, as we have described in section II. In this array form, M1

element ULA is followed by a M2 element NLA. This type of ar-
ray structure allows a good initial DOA estimate in multipath case.
As the size of the ULA part in PFNLA increases, initial DOA esti-
mates can be found more accurately. Therefore we apply the stan-
dard approach in M1 element ULA for multipath signals and em-
ploy forward-backward spatial smoothing [2] to determine the initial
DOA’s θ̂ for the source signals.

4.2. Construction of the mapping matrix, T

Once we have an initial DOA estimate θ̂ = [θ̂1, . . . , θ̂n], we con-
struct T by considering narrow sectors for each θi ∈ [θi − θε, θi +

θε]. Each of these small sectors are divided with θ̃i as explained in

the previous section and A(θ̃) and Ā(θ̃) are found. Interpolation
matrix is found from (8).

4.3. DOA Estimation

Given T, we can construct the Mα × Mα covariance matrix as
Ra = TR̄TH . Array interpolation should also be accompanied
with noise whitening [3]. In our case, TTH is rank deficient and
there is no unique whitening transformation [9]. It turns out that
noise whitening does not improve the DOA performance of NLA in
this case since the matrix TTH is close to a covariance matrix of a
white sequence already. On the contrary, noise whitening as in [9]
performs poorly at low SNR since the inverse of some of the close to
(or almost) zero eigenvalues are taken as zero for the Moore-Penrose
pseudoinverse of the diagonal eigenvalue matrix. Therefore there is
no need for noise whitening for our case which is advantageous for
computational complexity. The complete procedure for the DOA
estimation by array interpolation in NLA is given as follows,

Step 1: Use the output samples of the ULA part of the PFNLA and
find M1 × M1 covariance matrix. Apply forward-backward spatial
smoothing and then root-MUSIC algorithm to find an initial DOA
estimate θ̂.

Step 2: Use θ̂ and construct T from (8).

Step 3: Given T, find Ra = TR̄TH . Then use forward-backward
spatial smoothing to find the DOA estimate by root-MUSIC algo-
rithm.

Above algorithm will be denoted as MCA-AI. For the iterative
improvement, we can add the following additional step.

Step 4: (For iterative improvements) Use estimated angles in Step 1
or 3 and repeat Step 2 and 3 K times to improve the DOA estimates.

Iterative MCA-AI will be denoted as IMCA-AI. In certain cases,
IMCA-AI can significantly improve the DOA accuracy with a price
paid on the increase in computational complexity.

5. SIMULATION RESULTS

Proposed algorithms are evaluated for a variety of cases in an exam-
ple of PFNLA, d8 = [0 1 2 3 4 8 10 11]. DOA performance
is compared with the ULA which has the same number of elements,

namely, dULA = [0 1 . . . 7]. CRB for the NLA is also con-
sidered as in [3], [10], [11]. There are 1000 trials for each experi-
ment and the number of snapshots is 200. MCA-AI and IMCA-AI
are the noniterative and iterative algorithms proposed in this paper.
Initial estimate stands for the DOA estimate obtained from the first
M1 = 5 elements of the PFNLA. IMCA-AI uses a total of four
iterations. θε = 0.8 for the MCA-AI and it is changed at each it-
eration as θε = [1 0.5 0.2 0.1] for the the IMCA-AI algorithm.
Source angles are considered in degrees where 0 and 180 degrees
are endfire and 90 degrees is broadside. When there is multipath,
s3(t) = rejφs1(t) where r is uniformly distributed in [0.5, 1] and
φ is also uniformly distributed in [0, 2π]. Figure 1 shows the DOA
performance when there is no multipath and two sources are in 78
and 80 degrees respectively. The performance of both MCA-AI and
IMCA-AI are good and they approach to the CRB as the SNR is in-
creased. After SNR=10 dB, proposed approach performs better than
the same number of element ULA. Figure 2 shows the DOA perfor-
mance for three sources at 55, 72 and 85 degrees respectively when
there is multipath. In this figure, C-AI stands for the conventional
array interpolation as in [3] where the interpolation sector is taken as
40 degrees in [50, 90]. The performance of the proposed approach
is significantly better than the C-AI and ULA. Figure 3 shows the
sector independent characteristics of the proposed approach. Three
sources are positioned at 55, 85, and 130 degrees and there is mul-
tipath. The performance of the proposed methods approaches to the
CRB starting from the low SNR values. The robust DOA estima-
tion characteristic of the proposed approach is shown in Figure 4.
In this case, SNR=15 dB and there are three sources where two of
them are at 55, 85 degrees and the third one is swept from 87 to
149 degrees as shown in the figure. MCA-AI and IMCA-AI show
a robust performance for different source directions. As it is shown
in Figures 1-4, proposed approach performs significantly better than
the ULA with the same number of elements and approaches to the
CRB closely. DOA performance is also better than the conventional
array interpolation and there is no sector dependence.

6. CONCLUSION

We presented a type of NLA, namely PFNLA, to solve the multi-
path problem. Iterative and noniterative algorithms are proposed in
order to use root-MUSIC algorithm in DOA estimation. These algo-
rithms are based on the array interpolation. A Wiener formulation
is presented in order to find the mapping matrix effectively. This
formulation allows better mapping error especially at low SNR. An
initial DOA estimate is obtained by using a part of the sensors in
PFNLA. This initial DOA estimate is used in array interpolation to
obtain a better mapping from the NLA to a ULA with the same aper-
ture. It is shown that the proposed approach can effectively solve the
multipath problem and it is better than the conventional approaches
that can be used in NLA.
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Fig. 1. DOA performance for two uncorrelated sources at 78 and
80 degrees for an eight-element PFNLA. Forward-backward spatial
smoothing is applied assuming that there is no information about the
source correlation.
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Fig. 2. DOA performance for three sources at 55, 72 and 85 degrees.
The first and the third sources are coherent whereas the second one
is uncorrelated with the other sources.
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Fig. 3. Performance when the sources are spread over a large sector.
Sources are at 55, 85 and 130 degrees. First and third sources are
coherent.
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Fig. 4. Two sources at 55 and 85 degrees are fixed whereas the
third source is swept between 87 to 149 degrees. The first and third
sources are coherent.
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