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ABSTRACT

Performance of MUSIC and maximum likelihood direction-of-arrival
estimation in the “threshold” region is compared with performance
of the recently introduced G-MUSIC, based on the General Sta-
tistical Analysis (GSA) methodology. While the superiority of G-
MUSIC over MUSIC has been demonstrated, it remains to be estab-
lished whether G-MUSIC also outperforms MLE in scenarios within
the threshold region. Comparisons of likelihood functions for MU-
SIC and G-MUSIC generated solutions as well as clairvoyantly op-
timized solutions are conducted to address this question.

Index Terms— Array signal processing, Maximum likelihood
estimation, Adaptive estimation.

1. INTRODUCTION AND PROBLEM FORMULATION

In the absence of a priori distributions of the estimated parameters
such as directions of arrival (DOAs) of multiple Gaussian signals
impinging on an M -variate antenna array, the maximum likelihood
(ML) criterion has been broadly treated as providing the “bench-
mark” estimation accuracy, if effectively implemented. Indeed, un-
der asymptotic assumptions on the number of independent identi-
cally distributed (i.i.d) training samples T , the ML estimator (MLE)
is proven to be asymptotically (T →∞) efficient, which means that
its performance approaches the Cramér-Rao lower bound (CRLB)
[1]. Moreover, it has been demonstrated by P. Stoica, et. al. in [2]
that for independent Gaussian sources in noise, the well-known MU-
SIC estimation technique may be treated as a large-sample approxi-
mation of the ML estimator (MLE), with the same asymptotic ac-
curacy. However, it has been known for a long time that when
the sample support T (and/or signal-to-noise ratio) is insufficient,
MUSIC performance “breaks down” and rapidly departs from the
CRLB [3]. Typical manifestation of this breakdown is the appear-
ance of severely erroneous DOA estimates (“outliers”) that dramat-
ically degrade the overall estimation accuracy. It is also recognized
that the main phenomena which causes this breakdown is MUSIC-
specific and is associated with the so-called “subspace-swap” [4, 5].

But in addition to MUSIC, MLE also shows significant depar-
ture from the CRLB under certain conditions, even where the ML es-
timator could be accurately implemented [6]. Recently, we demon-
strated in [7, 8] that MLE suffers a performance breakdown at the
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point where solutions with completely erroneous DOA estimates
(outliers) generate a likelihood function (LF) value that exceeds the
LF values produced by the true solution, or even the local LF ex-
tremum of solutions with DOAs in the vicinity of the true solution.

Investigations of the ML “performance breakdown” (threshold)
conditions are ongoing [9, 10], but it has already been demonstrated
that there often is a significant “gap” in required sample support
and/or SNR between MUSIC-specific and ML-intrinsic threshold
conditions which may be practically addressed by ML-related rou-
tines [7, 8]. Yet below the threshold region for ML, it is clear that
maximization of the likelihood function (LF) is no longer associated
with DOA estimation accuracy improvement and therefore the ML
criterion is no longer adequate to the (DOA) estimation problem.

In this regard, it seems important to explore DOA estimation
capabilities provided by new estimation approaches based on the
novel “General Statistical Analysis” (GSA) methodology [11, 12].
As with MLE, this methodology (known also as G-estimation) is
also justified by asymptotic considerations, but there is a key distinc-
tion between the nature of asymptotic assumptions that support ML
and G-estimation correspondingly. It is this distinction that makes
the G-estimation paradigm more appropriate for applications in the
“threshold” area with insufficient sample support.

Specifically, GSA addresses the familiar problem of estimation
of some value ϕ(RM ) [13], where ϕ is a continuous function of the
entries of the covariance matrix RM , represented by the training set
of T independent identically distributed (i.i.d) M -variate observa-
tions (samples) x1, . . . ,xT .

Under traditional asymptotic assumptions when T is large and
M is fixed

M = constant, T →∞ (1)

and does not change when T grows, the estimator ϕ(R̂M ), where

R̂M is the sample (empirical) covariance matrix estimate R̂M =
1
T

∑T
j=1 xjx

H
j , is consistent in the traditional sense:

lim
T→∞

ϕ(R̂M ) = ϕ(RM ) (2)

Moreover, for a Gaussian model, R̂M is the ML covariance
matrix estimate and therefore, according to theorem 5.1.1 in [14],

ϕ(R̂M ) is also the MLE of ϕ(RM ), which has been, in fact proven
by P. Stoica et. al. explicitly for MUSIC [2].

However, assertion (2) is not valid (in general) in the asymptotic
regime addressed by GSA, when M tends to infinity together with
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the number of observations T , i.e. the G-condition

lim
T→∞

MT -1 = constant <∞ (3)

Under this G-condition, for a wide range of functions ϕ(RM ), the
GSA theory allows finding the limit (where limits of random quan-
tities are understood to hold in some stochastic sense (almost surely
or in probability):

lim
T→∞

[ϕ(R̂M )− ψ(RM )] = 0, (4)

where ψ(RM ) is some measurable functions of entries of the matrix
RM . In general, the functions ϕ(RM ) and ψ(RM ) do not coincide,
but with the help of the function ψ(RM ), GSA theory provides the

method of finding a measurable function g(R̂M ) such that

lim
T→∞

[g(R̂M )− ϕ(RM )] = 0 (5)

or the distribution of the normalized difference g(R̂M ) − ϕRM is
asymptotically normal.

The function g(R̂M ) is called the G-estimator of ϕ(RM ). The

method of finding the G-estimator g(R̂M ) is quite complex, requir-
ing tedious computer calculations. Yet, under some structural condi-
tions, for the MUSIC pseudo-spectrum of m sources ϕ(RM , θm),

ϕ(RM , θm) = SH(θ)EnE
H

nS(θ) (6)

where En is the set of (M −m) “noise subspace” eigenvectors of
the covariance matrix, the G-estimator (G-MUSIC) has been derived
by X. Mestre in [15, 16].

Since threshold DOA estimation conditions always consider fi-
nite M and T values and therefore a finite ratio M/T = c value,
for large enough M we may expect to be in a regime close to the
G-condition (3), rather than the conventional asymptotic regime (1).
Moreover, MUSIC-specific breakdown for strong signals is often ob-
served in the so-called “under-sampled” regime, where the number
of sources m � M , but still smaller than T . Here it is even more
difficult to extrapolate from conventional asymptotic conditions (1).

Therefore, for sufficiently large M and finite ratio M/T , one
can rightly expect that G-MUSIC should outperform conventional
MUSIC, which is the large sample ML approximation. Indeed, the
superiority of G-MUSIC over conventional MUSIC was recently re-
ported by X. Mestre in [16], where he demonstrated that for a certain
sample support T , “performance breakdown” in G-MUSIC takes
place for significantly smaller SNR than in conventional MUSIC.

The remaining question is a similar comparison between the
G-MUSIC and ML “performance breakdown” conditions. If the
ML-intrinsic breakdown occurs in M/T = c conditions where G-
MUSIC does not produce outliers, then this fact may be treated as
strong evidence of the ML paradigm decline. If on the contrary,
the ML performance breakdown conditions are still more favorable
than for G-MUSIC, then practical recommendations that follow from
this comparison should favor ML-based breakdown “prediction and
cure” techniques similar to the one suggested in [7, 17]. This is the
question we address in this paper.

2. MUSIC, G-MUSIC AND ML DOA ESTIMATION:
METHODOLOGY OF COMPARISON

Let x1, . . . , xT be the Gaussian i.i.d. training samples

Xj ∼ CN (0, RM ); E{xjx
H

k} = δijRM (7)

where for the considered below scenario withm uncorrelated sources
in additive white Gaussian noise (AWGN), the actual (true) covari-
ance matrix RM is specified as

RM =

m∑
j=1

σ2
jS(θj)S

H(θj) + σ2
nI (8)

Here σ2
j and θj are the power and DOA of the j-th source, S(θ) ∈

CM×1 is the M -variate antenna manifold (“steering vector”) in the
direction θ and σ2

n is the AWGN power.
For simplicity, let us assume that the number of sources m and

the noise power σ2
n are known a priori and therefore any estimator

considered in this study generates the covariance matrix model:

Rmod =

[
m∑

j=1

σ2
modj

S(θmodj )S
H(θmodj )

]
+ σ2

nI (9)

where for a given set of DOA estimates θ̂1, . . . θ̂m, the power esti-
mates are found in the usual way [18]:

(Σ̂) = diag+
{

[SH(θ̂)S(θ̂)]-1SH(θ̂)[R̂− σ2
0I]S(θ̂)[SH(θ̂)S(θ̂)]-1

}
(10)

Here diag+{A} means the diagonal matrix build of positive diag-
onal entries of the matrix A, with negative entries ajj replaced by
zeros. One may consider more sophisticated power-matching tech-
niques, but it is well known that ML matching is much less sensitive
to the power errors than to the DOA errors.

Given the sample covariance matrix R̂ with T � m, such that

R̂ = ÛmΛ̂mÛ
H

m + ÛnΛ̂nÛ
H

n (11)

with Ûj as the eigenvectors of the sample covariance matrix R̂, with
only T −m non-zero noise-subspace eigenvalues in Λn for T < M ,
the MUSIC DOA estimates are found at the m greatest extrema of
the MUSIC pseudo-spectra:

FMUSIC(θ) =
[
SH(θ)ÛnÛ

H

nS(θ)
]-1

. (12)

The derived in [16] G-MUSIC DOA estimates are specified by

all the eigenvectors of R̂:

FG(θ) =

[
SH(θ)(

M∑
j=1

φjÛjÛ
H

j )S(θ)

]-1

(13)

with the eigenvalues λ̂j , arranged in increasing order λ̂1 � λ̂2 �
. . . � λ̂M . For T < M , the first M − T eigenvalues are equal to
zero. For the known number m of point sources, the G-weighting
function φj , j = 1, . . . ,M has been specified

φ(j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +
M∑

k=M−m+1

(
λ̂k

λ̂j − λ̂k

− μ̂k

λ̂j − μ̂k

)
, j � M −m

−
M−m∑
k=1

(
λ̂k

λ̂j − λ̂k

− μ̂k

λ̂j − μ̂k

)
, j > M −m

(14)
with μ̂1 � μ̂2 � . . . � μ̂M denoting the real valued solutions to the
following equation in μ̂

1

M

M∑
k=1

λ̂k

λ̂k − μ̂
=

T

M
(15)
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Finally, the constant offset φ0 is added to the weighting factors
to keep them non-negative (i.e. φj + φ0 � 0).

Based on MUSIC and G-MUSIC DOA estimations, two cor-
responding covariance matrix models RMUSIC and RG are con-
structed, as specified by (9), (10).

Therefore, we may now calculate the LF valuesL(XT , RMUSIC)
and L(XT , RG):

L(XT , RMUSIC) =

[
exp[−Tr R-1

MUSICR̂]

πM detRMUSIC

]T

(16)

where L(XT , RG) is similarly introduced, and

L(XT , RL) =

[
exp[−Tr R-1

L R̂]

πM detRL

]T

(17)

where RL is the result of a local LF maximization over the DOA
set {θ̂j}, performed in the vicinity of the true DOAs {θj}, j =
1, . . . ,m. The accurate DOAs and powers are used to initialize this
local optimization. The results of this optimization are used only to
establish a local peak likelihood function value for thresholding (see
(18)) and in our ML assessment that follows, we ignore the DoA
estimates derived from this local optimization.

Since in the ML “threshold” area, this local extremum RL is
not necessarily the global one (in contrast to the behavior asymptoti-
cally in ML theory), strictly speaking, we need to perform the global
search in order to find the globally optimal ML solution, in order to
compare it with the G-MUSIC (and MUSIC) result.

For practically interesting scenarios with multiple sources im-
pinging upon an antenna array, the global search is infeasible in most
cases. Therefore, we consider a more pragmatic approach for our
comparison. Specifically, in each trial, we compare

{L(XT , RMUSIC) � L(XT , RL)

L(XT , RG) � L(XT , RL)
(18)

Those trials that passed this inequality we correspondingly treat
as the ones that belong to the set of admissible solutions (i.e. solu-
tions that are as least as likely as the “proper” ML solution).

Since most of the MUSIC and G-MUSIC trials do not meet this
inequality initially, we also perform refinement ofRMUSIC andRG

models that fail the threshold, in order to get solutions RMR (MU-
SIC refined) and RGR (G-MUSIC refined) that pass these inequali-
ties.

Obviously, since our refinement routine is not the global search,
the success rate of such ML optimizations is less than ideal, which
means that in some trials, we do not achieve the specified LF values.
Yet the assessment of ML accuracy can be performed over the set
of trials that do pass this clairvoyantly derived inequality, limiting
our ML performance assessment to those trials where performance
similar to that of a global maximization is achieved.

The refinement routine mentioned above follows our practical
rectification routine mentioned in detail in [17, 18]. Specifically,

among the set of DOA estimates {θ̂j} we first specify an “outlier” as
the estimate least contributing to the LF value. In result of a 1-D LF
search, we find a DOA estimate that substitutes an “outlier”, and then
perform local LF optimization in the vicinity of the new DOA set.
If necessary, we repeat the entire procedure, until the required LF
value is achieved, or the number of iterations exceeds a pre-defined
value. The main distinction between the “practical” routines intro-
duced in [17, 18] and this “impractical” routine are the threshold LF

values. Within our “practical” routines, we introduce some prop-
erly normalized likelihood ratios instead of the likelihood function,
and use the invariance property of these LR p.d.f.s for Rmod = R0.
This invariance allows us to replace the “strict” threshold (18) by
a scenario-invariant statistical one, that must be exceeded by the
LR(R0) with a certain (high) probability. Because of the similar-
ity to the generalized likelihood-ratio test (GLRT) used in adaptive
detection, we refer to this GLRT-based “prediction and cure” tech-
nique in “practical” circumstances as GLRT-PAC. Correspondingly,
the “impractical” routine used here is referred to at LF-PAC.

In this study, we use the clairvoyantly known value L(XT , RL)
within a LF-PAC framework in order to explore potential capabilities
of the ML methodology.

3. SIMULATION RESULTS

Our goal is to compare MUSIC, G-MUSIC and MLE performance in
the threshold area that spans the range from “proper” MUSIC behav-
ior (no outliers) up to the G-MUSIC and ML complete “performance
breakdown”. For this reason, we once again consider the scenario
already addressed in [15], with a (M = 20)-element uniform linear
array (ULA), element spacing of d/λ = 0.5 andm = 4 independent
Gaussian sources immersed in white noise.

The following DOA set was considered:

θm = {−20o,−10o, 35o, 37o} (19)

with equal SNR for each source, varying within the range from -
15dB to 25dB, while the sample support was selected, as in [15],
equal to T = 15 (i.e. M/T = 1.33 . . .)

Fig. 1 shows the mean square error (averaged over 30 trials) for
DOA estimates of the two closely spaced sources (at 35o and 37o).
Also shown is the stochastic Cramér-Rao lower bound (CRLB) av-
eraged over the sources with DOA 35o and 37o. The figures were
generated in a manner similar to Figure 4 in [15], but with a finer
SNR spacing to show more clearly the onset of the “threshold ef-
fect” of outlier production. In all cases, the number of sources was
considered known a priori, with m = 4. First one can see that
within the entire SNR domain shown (-15 to 25 dB), the actual DOA
estimation accuracy of G-MUSIC remains superior to the MUSIC
estimation accuracy.

Fig. 1: MSE for MUSIC, G-MUSIC and MLE (via LF-PAC)

The breakpoint where the accuracy starts to rapidly depart from
the CRLB due to the first outliers is around 17dB for G-MUSIC and
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20dB for MUSIC, as was already reported for this scenario in [16]
(after a SNR grid spacing modification discussed in a personal com-
munication [19]). Everywhere beyond this point (SNR = 17dB), the
actual performance of G-MUSIC and MUSIC is far worse than the
CRLB. The fact that in the threshold area, the CRLB dramatically
under-estimates the actual accuracy was perfectly known for MU-
SIC, and now is demonstrated for G-MUSIC as well.

The percentage of trials that contain an estimation error greater
than 2o degrees (an outlier) is illustrated for G-MUSIC and MUSIC
at Fig. 2 for varying SNR. This comparison makes clear that MU-
SIC deteriorates much more rapidly than G-MUSIC, reinforcing the
conclusion on essential G-MUSIC superiority over the conventional
MUSIC in the threshold area made in [16].

Yet examination of the MSE curves in Fig. 1 and the outlier pro-
duction rate curves in Fig. 2 for the MLE methodology discussed
above show a large shift in the onset of the threshold area, from 17-
20dB down to 3dB for both our MUSIC and G-MUSIC “seeded”
ML optimization routines (labelled GLF-PAC and MLF-PAC for G-
MUSIC initiated and MUSIC initiated LF optimization prediction
and cure). As expected for a technique designed to converge on the
MLE solution, the initial estimate source (G-MUSIC or MUSIC)
makes little difference in the performance of the ML-based post-
processing technique. As further confirmation that the LF-PAC rou-
tine is providing a reasonable estimate of global MLE performance,
the “statistical resolution limit” [20] (where the source separation is
equal to the CRLB of each source) coincides with the point where
outlier production dominates over proper solutions.

Fig. 2: % Outliers for Standard and LF-PAC aided MUSIC/G-
MUSIC

4. SUMMARY AND CONCLUSION

Comparative performance analysis of the MUSIC, G-MUSIC, and
MLE DOA estimation accuracy demonstrates that in the “threshold”
area, G-MUSIC significantly outperforms conventional MUSIC, but
its performance still remains inferior to the potential performance of
maximum likelihood estimation. This is despite the choice of a small
sample size scenario which favors the asymptotic assumptions asso-
ciated with the derivation of G-MUSIC. Specifically, for the consid-
ered scenario, we demonstrated that the SNR “performance break-
down” (threshold) values are equal to 20 dB, 17dB, and 3dB for MU-
SIC, G-MUSIC, and MLE correspondingly. The MLE proxy (LF-
PAC) used in analysis was based on clairvoyant knowledge of the
solution, but practical implementations based on the same technique
are also available and are a computationally efficient ML-based tech-
nique in the threshold region [21].
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