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ABSTRACT

In arrays with scan dependent errors, such as large position errors,
a dense calibration grid can become necessary. Calibration time is,
however, very expensive and keeping the measured calibration grid
as sparse as possible is important. In this paper it is shown how inter-
polation using local models can be used to make the calibration grid
more dense without increasing the number of measurements. Fur-
thermore, it is shown how the performance of the DOA estimation
with ESPRIT using arrays with large position errors can be improved
by a second step including weighted calibration.

Index Terms— Antenna arrays, calibration, interpolation, di-
rection of arrival estimation

1. INTRODUCTION

An array antenna is often modelled as being uniform and linear, but
in reality it consists of many components which all have a limited
manufacturing accuracy. This causes the signal paths from the an-
tenna elements to differ from the ideal both in amplitude and phase.
In addition to this, due to mutual coupling between the antenna el-
ements, the signals will also depend on the position of the antenna
element within the array.

To deal with imperfections in the array, a calibration is often nec-
essary. Many calibration methods are global, which means that the
same calibration is used for all Directions Of Arrival (DOA). This
is sufficient if the imperfections only give rise to scan independent
errors. Unfortunately some imperfections might cause scan depen-
dent errors, like position errors and differences in element patterns,
which can result in poor results from a global calibration.

Today most arrays are manufactured with a high mechanical and
electrical accuracy, and the errors are small. But relaxing these re-
quirements, might make the manufacturing process less costly. On
the other hand, scan dependent errors require a more dense calibra-
tion grid, which is time consuming and expensive. Therefore, it is
very important to use the calibration data in an efficient way to keep
the number of calibration measurements to a minimum.

Previously, we have shown that the performance of DOA esti-
mation using MUSIC for an array with scan dependent errors can
be improved using local calibration, see [1]. Local calibration is
easily applied to MUSIC. To apply local calibration to ESPRIT is,
however, less straightforward. This paper studies ESPRIT and sug-
gests two ways to improve the performance using local models. The
first, which also can be applied to other DOA-estimation methods, is
to make the calibration grid more dense by calculating pseudo cali-
bration data though interpolation from the measured calibration data
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using local models. This reduce the need for calibration measure-
ments. We will also show how the impact of scan dependent errors
in DOA estimation using ESPRIT can be reduced by a two-step pro-
cedure involving a weighting of the calibration data.

In this paper vectors are written in bold lower case letters, and
matrices in bold upper case letters. The transpose of a vector a is
marked aT while the complex conjugate transpose is marked a∗.

2. BACKGROUND

If d signals given by the vector s(t) arrive at an array from directions
θ, the output from the array x(t) can be modelled as

x(t) = A(θ)s(t) + η(t), (1)

where η(t) is noise with variance σ2 andA(θ) is a matrix with the
steering vectors. The steering vectors for a ULA are given by

a(θ) = [1, ejΔk sin(θ), ..., ejΔk sin(θ)(m−1)]T , (2)

where Δ is the distance between the sensors, m is the number of
sensors and k = 2π/λ where λ is the wavelength of s(t). Assuming
N time samples, an estimate of the covariance matrixR is calculated
as a time average

R̂ =
1

N

N∑

t=1

x(t)x∗(t). (3)

The data model in (1) is, however, a bit too simple to work for a
real array, since there is no way to describe the imperfections or dif-
ferences within the array. The ideal steering vector a(θ) is therefore
replaced by a real steering vector amod(θ) including the imperfec-
tions. It is given by

amod(θ) = Qa(θ), (4)

where Q is a correction matrix. The purpose of the calibration is to
find the true steering vectors amod(θ), or in other words, the correc-
tion matrixQ.

The calibration is performed in the following way. First calibra-
tion data is collected. One transmitter is used and moved in a grid
of calibration angles θcal = [θcal1, . . . , θcalj , . . . , θcalJ ], where J
is the number of calibration angles. For each angle a steering vec-
tor âmeas(θcalj) is estimated from the measurement data x(θcalj)
by picking out the principal eigenvector of the covariance matrix of
x(θcalj). These steering vectors characterize the array.
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In this paper both local [1] and global calibration [2] will be
used. In both cases a correction matrix is calculated as the optimal
matrix in a (weighted) least-square sense according to

Q̂ = arg min
Q

‖(Ameas(θcal) − QA(θcal))W
1/2‖F , (5)

where the subscript F means Frobenius norm,W is a weight matrix
and θcal is the vector of calibration angles. In the global case, the
matrix W is the identity matrix and Q̂ is scan independent. Only
one, full, matrix is calculated for all values of θ. In the local case the
weight matrixW(θ) is scan dependent, and one Q̂(θ) is calculated

for each θ of interest. Since each correction matrix Q̂(θ) is calcu-

lated for a single direction θ, only a diagonal matrix Q̂(θ) is needed
in the local case. The weighting matrix is also chosen to be diagonal.
The diagonal elements (the solution to (5)) are then given by

q̂i(θ) =

∑J
j=1 A∗

ijwj(θ)Ameasij
∑J

j=1 A∗
ijwj(θ)Aij

, (6)

where wj(θ) denotes diagonal element j of the weighting matrix
W(θ). The weights wj(θ) should give calibration data for angles
θcalj close to θ high weight. In this paper

wj(θ) = exp(−hD2
j ), (7)

defines the weights, and Dj = |θcalj − θ|. Also other weight func-
tions used [3] and [4, ch. 2] but as stated by the latter the choice
of the parameter h is more important for the performance than the
choice of weight function. The parameter h has the important role of
determining the width of the weight function. A too narrow weight
function will give a poorer interpolation between the calibration an-
gles and poorer reduction of noise influence. A too broad weight
function, on the other hand, will give a DOA estimate which is too
much influenced by the scan dependent model errors. The angular
bandwidth parameter h has been calculated from the calibration an-
gles using a leave-one-out approach, see [5].

3. INTERPOLATE NEW CALIBRATION STEERING
VECTORS

One problem with the global calibration method is that it requires a
rather dense calibration grid, especially for large arrays. In the calcu-
lation of the correction matrix for the global method, using (5), it is
required thatAA∗ has full rank. This means that the number of cal-
ibration angles must be at least as many as the number of elements,
i. e. J ≥ m, with equal sign if all columns of A are orthogonal.
The columns ofA become orthogonal if J = m and the calibration
grid is chosen equidistant in u = sin θ. For a large array, it might
be unfeasible or too expensive to do enough measurements. A rem-
edy, in such a case, is to calculate intermediate calibration values by
interpolating from the measured calibration data using local models.
This makes it possible to use global calibration, even if the number
of measured calibration angles are to few.

The calibration measurements are made in a sparse calibration
grid θcal = [θcal1 , . . . , θcalj , . . . , θcalJ ], where J < m. The inter-
polation is when done like this:

I Chose the density of the pseudo calibration grid,

θnewcal = [θnewcal1 , . . . , θnewcalo , . . . , θnewcalO ] (8)

whereO ≥ m, and θnewcal1 = θcal1 and θnewcalO = θcalJ .

II For each θnewcalo , calculate a local correction matrix, Q̂(θnewcalo),
using (6).

III The pseudo calibration measurements are given by

apseudomeas(θnewcalo) = Q̂(θnewcalo)a(θnewcalo). (9)

for each θcalo ∈ θnewcal

Finally the global correction matrix can be calculated from
Apseudomeas.

4. ESPRIT WITH WEIGHTING

ESPRIT is a computationally efficient DOA estimation method which
have the benefit that the DOA:s are given by numerical values rather
than as peaks in a spatial spectrum, like conventional beam-forming
or MUSIC. ESPRIT is usually applied to uniform linear arrays. Fol-
lowing [6], the second to nth row of the steering matrix A, called
A2, is given by

A2 = A1Φ, (10)

whereA1 is the n − 1 first rows ofA andΦ = diag([ejkΔ sin(θ1)

, . . . , ejkΔ sin(θd)]). The DOA:s are now a function of the eigenval-
ues ofΦ which can be estimated by using E = AT, where E is the
d principal (signal) eigenvectors of the covariance matrix of the data
R and T is a full rank matrix. Rewriting (10) as

E2 = E1T
−1ΦT = E1Ψ, (11)

where E1 and E2 are defined conformably with A1 and A2, the
eigenvalues of Φ are now the same as the eigenvalues of Ψ. The
matrixΨ is estimated by solving (11) in a least-squares sense.

When the actual array is not a ULA, the DOA estimation can
be done on a virtual ULA by calibration, [7]. Virtual array means
that the array data has been filtered to be like that from a ULA. This
means that the relation betweenA and E is rewritten as

E = QAT ⇒ Q−1E = AT. (12)

In accommodating ESPRIT to local calibration two problems
arise. The first is that the weighting of the calibration data depends
on the unknown true DOA, and the second is that, even though there
might be more than one source, the calibration data can, in the de-
scribed procedure above, only be weighted after one DOA at the
time.

The above complications can be met by a two-step procedure,
which we will call two-step ESPRIT. In the first step a DOA esti-
mation using a global correction matrix in (12) is done. The esti-
mated DOAs are then used to weight the data in a second step, and
the DOAs are estimated using ESPRIT, including a local correction
matrix in (12). In the second step one set of weights and a diago-
nal correction matrix is calculated for each of the estimated DOAs.
All the DOAs are estimated for each correction matrix, but only the
DOA for which the weights was calculated is saved. The DOAs not
weighted after are a potential source of bias error, but as will be
shown in Section 5.3 the results from the two-step ESPRIT are still
better than the globally calibrated estimation, which are biased by
the scan dependent errors.

5. EXAMPLES

5.1. Simulated data

Array data containing position errors have been simulated using the
function

x(t) = DCA(θ)s(t) + η(t), (13)
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Table 1. The mean of the absolute value of the estimation error of
the DOA of three sources (in degrees). The mean is calculated over
1000 simulations using different position and channel errors.

Source No cal Dense Sparse 1 Sparse 2

−20◦ 0.80 0.44 0.42 0.11
−4 to +55◦ 3.2 1.1 0.97 0.95
1 to +60◦ 2.3 0.95 0.82 0.81

where C is a mutual coupling matrix, D is a diagonal matrix mod-
elling channel errors as complex white gaussian noise with standard
deviation 0.5, η is additive white gaussian noise in the receiver chan-
nels having unit standard deviation and the signals s(t) are 20dB
above the noise η. The steering vector a(θ) has been modified to
include positional errors

a(θ) = [1, ejΔk sin(θ)(1+ε1), ..., ejΔk sin(θ)(m−1+εm−1)]T (14)

with random positional errors evenly distributed between −0.05λ
and 0.05λ in the direction along the array. The element separationΔ
is chosen to be 0.5λ. The array is assumed to be an m = 8 element
array of thin half wavelength long dipoles with mutual impedance
given by [8, p. 451]. IfZ is a symmetric Toeplitz matrix with the mu-
tual impedances, I is the identity matrix, Zself is the self impedance
and Zc is the characteristic impedance of the feeding lines, the cou-
pling matrix is given byC = (Zself +Zc)(ZcI+Z)−1. Conjugate
match Zc = Z∗

self is used.

5.2. Interpolated new calibration data

The method to calculate new calibration data using local models will
now be tested and evaluated using ESPRIT with global calibration.
The DOAs for three sources are estimated. One source is fixed at
−20◦, one source moves from 0◦ to 90◦ and the last source moves
from −4◦ to 85◦. Four different calibration cases are tested. In
all cases the (pseudo) calibration angles are spread equidistantly in
u = sin(θ) from u = −1 to u = 1. The cases are:

No cal no calibration
Dense cal global calibration with a measured calibration grid with

m + 1 calibration angles

Sparse cal 1 global calibration with m + 1 pseudo calibration an-
gles interpolated using local models from a measured calibra-
tion grid withm/2 + 1 calibration angles

Sparse cal 2 global calibration with 4m + 1 pseudo calibration an-
gles interpolated using local models from a measured calibra-
tion grid withm/2 + 1 calibration angles

Figure 1 shows the average of the DOA estimation errors (bias) in the
estimation of the source moving from 0◦ to 90◦, calculated as an av-
erage of 1000 simulations with different position and channel errors.
The dense calibration and the sparse calibration 1 have the same den-
sity in the (pseudo) calibration grid and performs almost the same,
even if the sparse calibration 1 has only half the number of measured
calibration angles. The sparse calibration 2 has four times as many
(pseudo) calibration angles as the dense and the sparse calibration 1,
and shows a result where the errors are smeared out over the DOAs.
The case without calibration shows the worst performance.

Table 1 shows the mean of the absolute value of the estimation
errors of the DOAs for all three sources. The average is only cal-
culated over the region where the outermost source is not more than
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Fig. 1. Bias in DOA estimation of one of three sources, the third
source in Table 1, using ESPRIT. The source is moving from 0◦ to
90◦, and the bias is calculated as an average of 1000 simulations
with different position and channel errors.

60◦ from broadside, even if Figure 1 indicates that the DOA estima-
tion performs rather well out to almost 80◦ from broadside if cal-
ibration is used. The calibration using a measured sparse grid and
local models to make the grid more dense shows at least as good
results as using the measured dense calibration grid. The result is
in some cases even better if the calibration grid is made even more
dense (Sparse cal 2) using local models. We can conclude that it is
possible to measure less calibration angles than the number of an-
tenna elements, and still get the same or better performance if we
calculate additional calibration angles from the measured ones us-
ing local models. This makes it possible to keep down the calibra-
tion grid density, which can be of major importance since calibration
time can be very expensive. The calculations will, however, still be
as heavy as if a measured dense calibration grid had been used.

5.3. Two-step ESPRIT

The two-step ESPRIT will be demonstrated on data from (13). The
calibration data is taken every tenth degree, within ±60◦. The val-
idation data has three sources, one fixed at 23◦ and the other two
moving, from−1◦ to−60◦ and from 1◦ to−58◦ respectively. Fig. 2
shows the bias errors of the DOA estimates of the twomoving sources
calculated as a mean of 1000 trials with different noise, channel and
position errors. In Table 2, the mean of the absolute value of the bias
errors and the mean of the standard deviations of the estimates for all
three sources are shown. It can be concluded what the two-step ES-
PRIT can improve both bias and variance errors compared to using
only the global ESPRIT.

The method will also be demonstrated on measurement data
from an ultrasound array testbed. The test setup consists of two loud-
speakers which can be moved on a horizontal bar and an array of 8
microphones. As calibration data, measurements every degree be-
tween −15◦ and 15◦ have been used. The validation data is single
source measurements which are made at the same angles but at an-
other time than the calibration data. This array is very far from being
a ULA, since it has been bent, and the element accuracy is very poor.
The maximal error perpendicular to the plane of the array is about
one wavelength, and the DOA estimation using this array is therefore
difficult.

This example demonstrates what happens if the data quality is
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Fig. 2. Two sources moving, one from −58◦ to 1◦ (upper figure)
and one from −60◦ to −1◦ (lower figure). The figures show the
bias error in the DOA estimates as a function of the true value of the
DOA for ESPRIT with global calibration (full line) and the two-step
ESPRIT (dashed line).

too poor. As can be seen in Figure 3, the global calibration com-
pletely fails to estimate the true DOAs. This estimate is, of course,
too poor to be used as a start value for the two-step ESPRIT. One
solution to this problem is to use an iterative procedure, where, the
start value of the kth iteration is θk = 0.75θk−1 +0.25θk−2 instead
of just θk−1, to stabilize the convergence of the iterations. Figure 3
shows that this multi-step ESPRIT gives an acceptable result, close
to broadside. It should be noted that the iterative estimation is not
to recommend if it is not necessary, since convergence can not be
guaranteed.

6. CONCLUSION

We have shown that for globally calibrated ESPRIT the performance
can be kept while reducing the number of calibration measurements.
This is achieved by calculating new calibration data from the cali-
bration measurements using local calibration. This method offers a
great possibility to reduce calibration time and cost, especially for
large arrays. Furthermore, it is shown that adding a second step, in-

Table 2. The average of the absolute value of the bias and the av-
erage of the standard deviation of the DOAs of three sources (in
degrees)

Average absolute value of the bias
Source Two-step Global

23◦ 0.0336 0.1329
1 to −58◦ 0.6949 1.6236
−1 to −60◦ 0.4551 0.8802

Average standard deviation
Source Two-step Global

23◦ 0.5183 0.6591
1 to −58◦ 1.4279 1.6387
−1 to −60◦ 1.0007 1.2178
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Fig. 3. Estimated DOA as a function of the true DOA using mea-
sured data from an ultrasound array testbed. Globally calibrated
ESPRIT estimate (full line), locally calibrated multi-step estimate
(dashed line) and true DOA (dotted line).

volving local calibration to the ESPRIT estimation, can improve the
performance in the presence of scan dependent errors in the array.
An interesting extension of the research would be to see if treating
the signals not weighted after as jammers could further improve the
performance.
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