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ABSTRACT

The objective in sensor collaboration for target tracking is to

dynamically select a subset of sensors over time to optimize

tracking performance in terms of mean square error (MSE).

In this paper, we apply the Monte Carlo method to compute

the expected posterior Cramér-Rao Lower Bound (CRLB) in
a nonlinear, possibly non-Gaussian, dynamic system. The

joint recursive one-step-ahead CRLB on the state vector is

introduced as the criterion for sensor selection. The proposed

approach is validated by simulation results. In the experi-

ments, a particle filter is used to track a single target mov-

ing according to a white noise acceleration model through

a two-dimensional field where bearing-only sensors are ran-

domly distributed. Simulation results demonstrate the im-

proved tracking performance of the proposed method com-

pared to other existing methods in terms of tracking accuracy.

Index Terms— Target tracking, Particle Filters, Extended

Kalman Filter (EKF), posterior CRLB, sensor networks

1. INTRODUCTION

For an Ad Hoc sensor network that consists of a large number

of spatially distributed sensors, it is desirable not to use all the

sensors to track a target at each time, since there always ex-

ist constraints on computation, sensing range, communication

bandwidth, and energy consumption. Thus a critical task is to

select a subset of sensors to optimize system performance un-

der these constraints.

In [1][2], sensor selection is based on an entropy-based in-

formation measure, which is calculated by the expected pos-
terior distribution of the state to be estimated. Because ac-
tive sensors are selected before new measurements arrive, ex-

pected likelihood function without measurements has to be

estimated, which needs considerable extra computation and

increases the estimation error. An intuitive method that em-

ploys the expected mean squared state estimation error to de-

termine sensor scheduling for multiple steps ahead is pre-

sented in [3][4]. An extension of this method for tracking

a highly maneuvering target in clutter was proposed in [5].

This approach works only if the sensors to be scheduled have

different covariance matrices for the measurement noise. Oth-

erwise the evaluation of the cost function results in equal val-

ues. So it is not applicable to a large scale sensor network

with homogenous sensors.

The tracking accuracy in terms of mean square error (MSE)

is bounded by posterior Cramér-Rao lower bound (PCRLB)
[6]. This lower bound gives an indication of performance lim-

its, so it can be used as a criterion for sensor selection [7]. The

PCRLB depends not only on the sensing accuracy of individ-

ual sensors, but also on sensor locations relative to target po-

sition and the posterior probability density function (PDF) of
the target state. Only under very restricted conditions where

the target motion model and the sensor measurement model

are both linear and the noise for each model is Gaussian, can

we get a closed form expression for PCRLB. To overcome the

nonlinearity, in this paper we establish our cost function for

sensor selection based on the expected PCRLB, which is com-

puted by a particle filter. It will be shown that in our method,

even without the new measurements, we still can calculate

the PCRLB driven by the particle filter, and estimate of the

expected likelihood function is not required. The simulation

results show that the particle filter PCRLB driven method out-

performs the EKF posterior CRLB driven method [7] and the
entropy based method [2]. The proposed method can be ap-

plied to either homogenous or heterogenous sensor networks

with nonlinear models and non-Gaussian noise. .

2. SYSTEMMODELS

2.1. Target Motion Model

In this paper, we consider a single target moving in a 2-D

Cartesian coordinate plane according to a dynamic white noise

acceleration model [8]:

xk = Fxk−1 + vk (1)

where the constant parameter F models the state kinematics,
the target state at time k is defined as xk = [xk ẋk yk ẏk]T ,
xk and yk denote the target position and ẋk, and ẏk denote the
velocities. vk is white Gaussian noise with covariance matrix
Q.
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2.2. Sensor Measurement Model

In this paper, we assume that a large number of homogenous

bearing only sensors are randomly deployed. There exists a

cluster head (CH) that is responsible for collecting informa-

tion from each sensor and providing the estimate of the target

state. The CH has knowledge about the individual sensors,

such as their positions and measurement accuracy. At each

time, only a small number of sensors are activated to perform

the sensing task and providing their observations to the CH.

The measurement model is given by

zjk = h(xk) +wk = tan−1
(
yk − ysj

xk − xsj

)
+wk (2)

where zjk is the measurement from sensor j, x
sj and ysj rep-

resent the corresponding position of sensor j, and wk is the

white Gaussian noise with covariance matrixR.

3. POSTERIOR CRAMER-RAO LOWER BOUNDS

Let x̂k be an unbiased estimator of the state vector xk, given
z1:k, which denotes all the measurements from time 1 to k.

The covariance of the state estimate Pk is bounded below by
the recursive PCRLB, which is defined to be the inverse of the

Fisher Information Matrix(FIM) Jk

Pk = E{[x̂k − xk][x̂k − xk]T } ≥ J−1k (3)

Jk = E{−Δxk
xk
log p(xk, zk)} (4)

where J−1k is the posterior CRLB and ΔΘ
Ψ = ∇Ψ∇T

Θ. ∇ is

the first-order partial derivative defined as

∇x =
[

∂

∂x1
, · · · , ∂

∂xr

]T
(5)

In [6], Tichavske et al. provide a recursive approach for cal-

culating the sequential FIM Jk

Jk+1 = D22
k −D21

k (Jk +D11
k )

−1D12
k (6)

where

D11
k = E{−Δxk

xk
logp(xk+1|xk)} (7)

D12
k = E{−Δxk+1

xk logp(xk+1|xk)} (8)

D21
k = E{−Δxk

xk+1
logp(xk+1|xk)} = (D12

k )
T (9)

D22
k = E{−Δxk+1

xk+1 logp(xk+1|xk)}+
E{−Δxk+1

xk+1 logp(zk+1|xk+1)}
= D22,a

k +D22,b
k (10)

Note that all the above expectations are taken with re-

spect to the joint PDF p(Xk+1,Zk+1), where Xk+1�x0:k+1

and Zk+1�z1:k+1 denote all the states and observations up to

time k + 1.

The recursion of equation(6) starts from an initial FIM J0,
which can be calculated from the a priori PDF p(x0).

J0 = E{−Δx0
x0 logp(x0)} (11)

Even though these are elegant expressions to calculate

FIM recursively, the expectations in (7)∼(10) generally do
not have analytical closed-form results. Here we circumvent

the above difficulty by resorting to the Monte Carlo approach

by converting the above integrals to summations [9]. Each

PDF in the expectations will be represented as a set of sam-

ples with associated weights. For the linear motion model

and nonlinear measurement model adopted in this paper, the

equations (7)∼(10) become

D11
k = FTQ−1F (12)

D12
k = (D12

k )
T = −FTQ−1 (13)

D22
k = Q−1 +D22,b

k (14)

It can be proved that if wk in Equation (2) is additive white

Gaussian noise, D22,b
k can be simplified as

D22,b
k = 1/2E{Δxk+1

xk+1{(zk+1 − h(xk+1))
R−1(zk+1 − h(xk+1))}}

=
1
R
Ep(xk+1|xk){Λk(xk+1,xk)} (15)

And for the bearing-only measurement model

Λk(xk+1,xk) =

⎡
⎢⎢⎣

Mk
1,1 0 Mk

1,3 0
0 0 0 0

Mk
3,1 0 Mk

3,3 0
0 0 0 0

⎤
⎥⎥⎦ (16)

where

Mk
1,1 =

(yk+1 − ysj )2

[(xk+1 − xsj )2 + (yk+1 − ysj )2]2

Mk
1,3 =Mk

3,1 = − (xk+1 − xsj )(yk+1 − ysj )
[(xk+1 − xsj )2 + (yk+1 − ysj )2]2

Mk
3,3 =

(xk+1 − xsj )2

[(xk+1 − xsj )2 + (yk+1 − ysj )2]2

Note that the expectation of Λk(xk+1,xk) in (15) is taken
with respect to p(xk+1|xk) instead of p(Xk+1,Zk+1) be-
cause of the following iterative equation.

p(Xk+1,Zk+1) = p(Xk,Zk)·p(xk+1|xk)·p(zk+1|xk+1)
(17)

The likelihood p(zk+1|xk+1) has been integrated out, so the
proposed selection strategy based on (15) to be described in

Section 4 is computationally much simpler than the information-

driven approach [1][2]. The integrals due to expectation can

be evaluated approximately by Monte Carlo integrals only if
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we have a discrete sample-based representation for p(xk+1|xk).
In particle filtering, the posterior PDF p(xk|Zk) can be rep-
resented approximately by a set of samples with associated

weights.

p(xk|Zk) ∼=
N∑
i=1

ω
(i)
k · δ

x
(i)
k

(xk − x(i)k ) (18)

where N is the number of particles. The PDF p(xk+1|xk)
can be represented approximately by propagating the samples

{x(i)k } from time k to k + 1

p(xk+1|xk) ∼=
N∑
i=1

ω
(i)
k · δ

x
(i)
k+1
(xk+1 − x(i)k+1) (19)

Then Equation (14) can be rewritten as

D22
k

∼= Q−1 +
1
R

N∑
i=1

Λ(x(i)k+1,x
(i)
k ) (20)

From the strong law of large numbers, it can be shown that

the above sample-based expectation converges almost surely

to the true expectation(10). Now plug (12), (13) and (20) into

(6), and we can get approximate versions of the recursive FIM

Ĵk in terms of samples and associated weights. Note that the
cost function (to be described in the next section) established

on the approximation of Jk is computed without any future
measurements, hence, it can be used as a selection criterion

among the sensor candidates for the target tracking problem

in sensor networks.

4. SENSOR SELECTION BASED ON POSTERIOR
CRLB

Assume we choose a subset consisting of Lk
s sensors from

the total Ls candidates on every tracking snapshot at time k,
where Lk

s can change over time. Then the weights can be

recursively calculated according to the following equation if

the sensor measurements are independent from each other.

ω
(i)
k = ω

(i)
k−1

p(x(i)k |x(i)k−1)
π(x(i)k |xi0:k−1,Z1:k)

∏
j∈Lk

s

p(zjk|x(i)k ) (21)

where π(xk|x0:k−1,Z1:k) is the proposal density function,
which is used to generate new particles at time k, Z1:k de-

notes all the measurements up to time k, Zk�{zjk, j ∈ Lk
s}

are the measurements at time k. Now the recursive PCRLB
can be evaluated with the help of particle filtering.

The PCRLB gives an indication of performance bounds,

and no unbiased estimators can outperform it in terms of MSE

for each element of the state. Usually people are more con-

cerned with the target position. So we choose the summation

of the position bound along each axis as the cost function for

time k + 1

Ck+1 = J−1k+1(1, 1) + J−1k+1(3, 3) (22)

where the J−1k+1(1, 1) and J−1k+1(3, 3) are the bounds on the
MSE corresponding to xk+1 and yk+1 respectively. The cost

functions can also be selected as the determinant of J−1k or

trace of J−1k , but the simulation results did not show much

difference. Those sensors that collectively minimize the above

cost function will be activated at the next time k + 1. In this
paper, we use the optimal enumerative search method to de-

termine the combination of sensors, which minimizes the cost

function.

Lk+1,∗
s � argmin

Lk+1
s ⊂S

Ck+1(Lk+1
s ) (23)

where S denotes the set containing all the sensors.
5. SIMULATION RESULTS

The performance of the proposed sensor selection approach

in this paper is evaluated in terms of the MSEs of the state

vector. In the simulations, we consider a scenario where 100
homogenous bearing-only sensors are randomly deployed in

a 500 × 500 field. A single target moves in the field for 60
seconds according to the white noise acceleration model (1).

At each time, 2 sensors are activated to report the information
of the target to CH according to (2). The measurement noise

variance is set to R = 0.025, and the system noise covariance
matrix Q is chosen as

Q =

⎡
⎢⎢⎣
0.3333 0.5000 0 0
0.5000 1.0000 0 0
0 0 0.3333 0.5000
0 0 0.5000 1.0000

⎤
⎥⎥⎦

The prior PDF of the target state is assumed Gaussian with

mean [0 10 0 10]T and covariance P0 = diag(1, 0.5, 1, 0.5).
For simplicity and illustrative purposes, the transition PDF

p(xk+1|xk) is chosen as the proposal density function π(xk|
x0:k−1, z0:k). We implement our approach by usingN = 300
particles, and 100 Monte Carlo repetitions are performed for
each experiment.

For comparison purposes, we also consider three other se-

lection methods. 1) Nearest neighbor: Let (x̂k+1, ŷk+1) de-
note the predicted position based on the current state estima-

tion p(xk|z1:k). The sensors that have the closest distance to
the predicted position of the target at the next time will be se-

lected. 2) Expected posterior entropy: the sensors that have

the largest expected posterior entropies will be selected. 3)

PCRLB calculated by EKF [7].

Figure 1 demonstrates the tracking scenario where true

target trajectory and estimated trajectories by different sensor

selection methods are compared. We can see that the pro-

posed selection method achieves more accurate tracking re-

sults. Figure 2 and Figure 3 show the MSEs of target posi-

tion in x and y coordinates respectively. The proposed sensor
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selection method by minimizing the PCRLB offers a signifi-

cant error reduction for most of the tracking time compared to

other existing methods. As can also be seen, posterior CRLB
is also drawn in the figures and demonstrates that it is lower

than all the estimation methods employing different sensor

selection methods for almost all the points.

6. CONCLUSIONS

In this paper, we considered a sensor selection problem for

tracking a single target in sensor networks. The one-step

ahead posterior CRLB is approximated recursively by using a
particle filter without the knowledge of future measurements.

Sensors, that collectively minimized the cost function estab-

lished on PCRLB, are activated, at that time while other sen-

sors are in the idle state. Simulation results are presented to

illustrate the improved performance of our proposed sensor

selection approach, which outperforms other existing meth-

ods.
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Fig. 1. True and estimated target trajectories using different
sensor selection methods.
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