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ABSTRACT

This paper considers the accuracy of sensor node location es-
timates from self-calibration in sensor networks. The loca-
tion parameters are shown to have a natural decomposition
into relative con guration and centroid transformation com-
ponents based on the in uence of measurements and prior
information in the problem. A linear representation of the
transformation parameter space, which includes rotations and
translations, is shown to coincide with the nullspace of the
unconstrained Fisher information matrix (FIM). To regularize
the absolute localization problem, we consider constraints on
the coordinate locations and the impact of these constraints
on relative and absolute location error. A geometric inter-
pretation of the constrained Cramér-Rao bound (CRB) is pro-
vided based on the principal angles between the measurement
subspace and the constraint subspace. Examples illustrate the
utility of this error decomposition.

Index Terms— Sensor networks, Localization, Constrained
estimation, Cramér-Rao bound, Fisher information

1. INTRODUCTION

In a distributed wireless sensor network, knowledge of the
sensor locations is a prerequisite to obtaining meaningful in-
formation from measurements made by the sensors. As such,
a diverse variety of self-localization algorithms based on some
form of inter-node measurements have been proposed in the
literature. In order to better understand how noise, deploy-
ment geometry, and measurement type effect fundamental lo-
cation estimation performance, a number of authors have con-
sidered the Cramér-Rao bound (CRB) on self-localization per-
formance (see eg. [1, 2] and references therein). In this paper
we extend the general CRB analysis by providing a meaning-
ful decomposition of localization error.
In particular, we decompose the total localization error

into a relative portion representing error in the estimated net-
work shape and a transformation portion representing error in
the absolute position of the relative scene. This decomposi-
tion is motivated by the fact that relative information is de-
rived from both measurements and prior information, while
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transformation information comes solely from prior informa-
tion. Because the inter-node calibration measurements pro-
vide no information about the transformation parameters, we
regularize the problem by considering general parametric con-
straints on the sensor locations.
One of the main contributions of this work is an anal-

ysis illustrating how the constraint subspace interacts with
the measurement subspace to effect total localization perfor-
mance. Along with the CRB itself, the relative / transfor-
mation decomposition presented here gives insight into how
external inputs effect absolute localization. This partitioning
of error is also useful to higher level applications in a sensor
network that utilize results of the localization service.

2. RELATIVE AND TRANSFORMATION ERROR

2.1. Formulation

The absolute self-localization problem is to combine inter-
node measurements collected in a measurement vector z with
prior information in order to obtain estimates of the coordi-
nates {pi = [xi yi]

T }N
i=1 of the N constituent nodes of the

network. A general measurement model takes the form

z = μ(θ) + η ∈ R
M , (1)

where z is the vector of M measurements, μ is the mean of
the observation which is structured by the true coordinate pa-
rameter vector θ = [x1 y1 . . . xN yN ]T , and η is a zero-mean
noise vector. In this paper we consider inter-node distance
measurements, hence elements ofμ are of the form ||pi−pj ||.
Since inter-node distances are invariant to the scene’s absolute
position and orientation, the measurements only inform upon
the relative shape of the network. As observed in [3], this
manifests itself as a singular Fisher information matrix, J

J = [UJ ŨJ ]

[
ΛJ 0
0 0

]
[UJ ŨJ ]T , (2)

whose nullspaceR(ŨJ ) is spanned by the vectors

vx = αx

⎡
⎢⎢⎢⎢⎢⎣

1
0
1
0
...

⎤
⎥⎥⎥⎥⎥⎦

,vy = αy

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
1
...

⎤
⎥⎥⎥⎥⎥⎦

,vφ = αφ

⎡
⎢⎢⎢⎢⎢⎣

−(y1 − ȳ)
(x1 − x̄)
−(y2 − ȳ)
(x2 − x̄)

...

⎤
⎥⎥⎥⎥⎥⎦

, (3)

II ­ 10331­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



where the scalers αx, αy , and αφ are chosen such that the
vectors in (3) have unit norm. The vectors vx and vy rep-
resent translations in the x- and y-directions, respectively,
and vφ represents a linearization of the rotation operation
of each point pi about (x̄, ȳ), where x̄ = 1

N

∑N
i=1 xi and

ȳ = 1
N

∑N
i=1 yi are the x and y centroids.

Absolute localization based on measurements alone is in-
herently ill-posed as the translation and rotation components
of θ in R(ŨJ) cannot be estimated. To regularize the prob-
lem, we consider generic parametric constraints of the form

f(θ) = 0. (4)

In general, f(θ) is a k-vector representing a system of k con-
straints. For example, to constrain the centroid (k = 2) to the
origin (0, 0), we have

f(θ) =
1

N
[vx vy]T θ. (5)

This constraint formulation represents a generalization of the
typical use of anchor (also called beacon) nodes.
From [4], the CRB for an unbiased estimator θ̂ satisfying

a constraint f(θ̂) = 0 is

E[(θ − θ̂)(θ − θ̂)T ] ≥ Uc(U
T
c JUc)

−1UT
c � Σc, (6)

where Uc is a semiunitary matrix whose columns form an
orthonormal basis for the nullspace of the gradient matrix
F = ∂f(θ)

∂θT ∈ R
k×2N . We assume that the constraint f(θ) is

chosen such that the inverse in (6) exists.

2.2. Error decomposition

Let θ̂ = [x̂1 ŷ1 . . . x̂N ŷN ]T denote the parameter estimate
given by some estimator. If the estimator did not yield the
optimal transformation parameters (translation and rotation),
then the error

ε = ||θ − θ̂||2, (7)

can be further reduced by applying a planar transformation
to the estimates θ̂. Note that ε =

∑N
i=1 d2

i , where di is
the distance between node i and its estimate. We denote the
optimally translated and rotated estimates as θ̂r, which may
be approximated by θ̂r ≈ θ̃r = θ̂ + W β̂, where W =
[vx vy vφ], and the optimal transformation coef cients are

β̂ � arg min
β
||θ̂ + Wβ − θ||2 (8)

= WT (θ − θ̂) (9)
= [β̂x β̂y β̂φ]T . (10)

As the translation and rotation components of θ̂ have been
corrected in θ̃r, the error εr � ||θ − θ̃r||

2 represents the rel-
ative error, or the error in the “shape” of θ̂. We de ne the

transformation error, εt, as the portion of the total error due to
miss-estimation of the transformation parameters, εt � ε−εr.
As illustrated in Figure 1, εr and εt are easily represented
in terms of w̃t and w̃r, the projections of the error vector
ξ = θ − θ̂ ontoR(W ) andR(W )⊥, respectively.
For an unbiased estimator, we may express the expected

values of ε, εr and εt in terms of the estimator covariance ma-
trix Σ

θ̂
= E[ξξT ]. Let Σt = E[ββ̂] = WT Σ

θ̂
W denote

the covariance matrix of the transformation coef cients, and
let Σr = E[w̃rw̃

T
r ] = (W̃W̃T )Σ

θ̂
(W̃W̃T ) denote the co-

variance matrix of the error in the relative subspaceR(W )⊥,
where the columns of W̃ form an orthonormal basis forR(W )⊥.
The expected errors are

e � E[ε] = E[ξT ξ] = tr Σ
θ̂

(11)

er � E[εr] = E[w̃T
r w̃r] = tr Σr (12)

et � E[εt] = E[w̃T
t w̃t] = tr Σt, (13)

and, as desired, the sum of the mean component errors equals
the total: e = tr [W̃W ] Σ

θ̂
[W̃W ]T = er + et.

For a given constraint function f(θ) and noise distribu-
tion pη(η), lower bounds on the expected errors e, er and et

may be obtained by substituting the constrained CRB Σc in
(6) for Σ

θ̂
in (11), (12), and (13).

θ

R(W)⊥⊥⊥⊥

R2N

θ̂

R(W)

S(θ)^

θ̂r
θ~r

wt

wr

ξ

wt~wr~

Fig. 1: Geometric illustration of relative and transformation errors in the
location parameter vector θ. The manifold S(θ̂) represents rigid translations
and rotations of the coordinate estimates θ̂, and the point on S(θ̂) closest
to θ represents the optimally transformed estimate, θ̂r . The error vector
ξ = θ− θ̂ may be decomposed into ξ = wr + wt, wherewr = θ− θ̂r is
the relative error vector andwt = θ̂r−θ̂. wt andwr may be approximated,
respectively, by w̃t and w̃r , the projections of the error vector ξ onto the
transformation subspaceR(W ) and the relative subspaceR(W )⊥.

3. GEOMETRIC INTERPRETATIONS

In this section we provide a geometric interpretation of how
the total error, tr Σc, depends on J and properties relating the
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subspaces R(UJ) and R(Uc). Let A = UT
J Uc, and consider

its SVD

A = [Y1Y2]

[
ΛA

0

]
ZT , (14)

where Y1 ∈ R
2N−3×2N−k and Y2 ∈ R

2N−3×k−3. The sin-
gular values, σ1(A) ≥ · · · ≥ σ2N−k(A), correspond to the
cosines of the principal angles, 0 ≤ φ1 ≤ · · · ≤ φ2N−k ≤
π/2, between the subspacesR(Uc) andR(UJ ), [5, Ch. 12]

cos φi = σi(A). (15)

It can be shown that [6]

2N−k∑
i=1

1

cos2 φi

1

σ2N−k+1−i(J)
≤ tr Σc ≤

2N−k∑
i=1

1

cos2 φi

1

σk−d+i(J)
. (16)

The lower bound consists of a weighted sum of the recipro-
cals of the largest (2N − k) singular values, and the upper
bound uses the reciprocals of the (2N − k) smallest non-zero
singular values of J . The weightings depend on the principal
angles betweenR(Uc) andR(UJ ).
Examining (16) we can see how the interplay between the

two information sources – constraints and measurements – in-
uences the total estimation error. Considering a linearization
of the constraint f(θ̂) about θ,

f(θ̂) ≈ f(θ) + F (θ̂ − θ) = 0 (17)
=⇒ F θ̂ = Fθ − f(θ), (18)

we see that, for θ̂ ≈ θ, the constraint function precisely de-
termines θ̂ in the k-dimensional subspace R(FT ) but says
nothing about the components of θ̂ in R(FT )⊥ = R(Uc).
We callR(FT ) andR(Uc) the constrained and unconstrained
subspaces under constraint f , respectively.
The parameter space R

2N may also be partitioned from
the measurements intoR(UJ ) andR(ŨJ), whereR(UJ ) rep-
resents the subspace informed upon by measurements, and
R(ŨJ ) = R(W ) represents the transformation subspace which
is not estimable from measurements.
When the unconstrained subspace,R(Uc) is closely aligned

with the measurement subspace, R(UJ), the principal angles
are small and the estimation performance, from (16), is good.
If, for a minimally constrained system, the k = 3 con-

straints precisely determine the components of θ̂ in R(ŨJ ),
then R(Uc) = R(UJ ) and we may write Uc = UJB, for
some non-singular matrix B. As R(ŨJ ) = R(W ), this cor-
responds to a constraint that fully speci es the unknown trans-
formation parameters; that is, the scene centroid and orienta-
tion are fully speci ed. In this case, the CRB from (6) may

be rewritten as

Σc = Uc(B
T ΛJB)−1UT

c

= UJΛ−1
J UT

J = J†. (19)

In the localization context, the pseudo-inverse J† was con-
sidered in [3] and referred to as the relative CRB, and later in
[7] being called the anchor-free CRB. This paper generalizes
the relative CRB concept to the case of general constraints,
and provides a geometric understanding of the subspaces in-
volved.

4. EXAMPLE: ANCHOR SELECTION

Anchor nodes, that is, nodes with a priori known location co-
ordinates, provide a particular type of the more general con-
straint (4). Let A denote a set of anchor nodes with coor-
dinates collected in the vector θA. Then, for anchors, the
constraint function takes the linear form

f(θ) = H θ − θA = 0, (20)

where the rows ofH correspond to appropriate columns of the
identity matrix in order to extract the known coordinates from
θ. We consider the selection of three anchor nodes in order to
localize, with an absolute reference, the network in Figure 2.
All node pairs make distance measurements with Gaussian
measurement error η ∼ N (0, σ2

mI), where σm = 2m. For
anchorsA = {9, 13, 14}, the gure illustrates 2-σ uncertainty
ellipses for each node corresponding to the total constrained
CRB Σc, and the relative portion Σr.
From Figure 2 we observe a large radial uncertainty in the

total error because the anchors are clustered at one corner of
the network. This radial “smearing” is much less pronounced
in Σr which eliminates uncertainty in the transformation pa-
rameters. The total estimation error may be improved by se-
lecting better anchor points. Two heuristic selection mecha-
nisms are to choose anchors that 1) cover a maximal area, or
2) have a maximal perimeter. In Figure 3 we plot the trans-
formation error et, and the relative error er, as a function of
all possible

(
16
3

)
anchor node triples, sorted by decreasing et.

From the gure we see that different anchor sets have little
effect on the relative error but have a signi cant effect on the
transformation error. The total absolute localization error is
the sum of the relative and transformation portions. The opti-
mal anchor set with the minimum total error isA = {1, 4, 13}
and is illustrated by the vertical bar in Figure 3. For this case,
the maximum perimeter heuristic yielded the optimal anchor
set, and the maximum area heuristic yielded A = {1, 8, 13}
with an error only 0.5% greater than the optimal error. In gen-
eral, neither heuristic gives the lowest total error, but both re-
sult in localization estimates very close to optimal for a large
number of example networks that have been considered.
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Fig. 2: Sensor positions and associated 2-σ uncertainty ellipses correspond-
ing to the total constrained CRBΣc (- -), and the relative boundΣr (—). The
total error exhibits large radial uncertainty which is not seen in the relative
subspace. The anchor set wasA = {9, 13, 14} for both cases.

5. CONCLUSIONS

Node localization error has a natural decomposition into rel-
ative and transformation components, due to the nature of lo-
calization measurements and the in uence of prior constraint
information. Transformation error represents error in the trans-
lation and rotation of a relative solution and is only informed
upon by prior constraints. Relative error represents error in
the estimated “shape” and is derived from both measurements
and constraints. The decomposition is readily extended to
other measurement types including time-difference and arrival-
angle measurements [6].
In this paper we presented general results (not speci c

to localization) that relate bounds on total estimation error
in a constrained system to the unconstrained Fisher informa-
tion matrix and the principal angles between the measurement
subspaceR(UJ ) and the unconstrained subspaceR(Uc).
The results of this paper provide insight into how differ-

ent information sources impact different parts of the nal lo-
calization estimate. There are three general areas which can
bene t from the results in this paper. The rst area involves
relative-only estimators, such as Isomap [8] and multidimen-
sional scaling. In this case, the relative CRB (19) is the appro-
priate benchmark. The second area includes development of
new absolute localization algorithms whose performance and
design may be analyzed with respect to relative and transfor-
mation components separately. The example in Section 4 il-
lustrated how these components behaved very differently with
respect to anchor selection. The nal area includes applica-
tions relying on localization results where it may be bene cial
to dissect a localization error covariance matrix into transfor-
mation error Σt, and relative error Σr. For example, a source
tracking algorithm may initially obtain a track relative to the
sensors, and subsequently apply Σt to prescribe translation
and rotation variability to the estimated track.
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Fig. 3: The transformation error et and relative error er exhibit very different
responses to alterations in the constraint function — which is achieved by
selecting different anchor triplets of the network in Figure 2. The total error
is the sum of these two curves, e = et + er , and is minimized by the anchor
setA = {1, 4, 13}.
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