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ABSTRACT

Target localization and tracking are two of the critical tasks of sensor
networks in many applications. Conventional localization and track-
ing techniques developed for wireless systems that rely on direction-
of-arrival or time-of-arrival information, are not suitable for low-
power sensors with limited computation and communication capa-
bilities. In this paper, we propose a low complexity and energy ef-
ficient localization and tracking method for binary sensor networks
in noisy environments, where the sensors can only perform binary
detection, and the physical links are characterized by additive white
Gaussian noise channels. The proposed method is based on known
spatial topology. An efficient wake-up strategy is used to activate
a particular group of sensors for cooperative localization and track-
ing. We analyze the localization error probability and tracking miss
probability in the presence of prediction errors. Simulation results
validate the theoretic analysis and demonstrate the effectiveness of
the localization and tracking mechanism.

Index Terms— Localization, tracking, target detection, binary
sensor networks, spatial topology

1. INTRODUCTION

Wireless sensor networks are composed of nodes with sensing, wire-
less communication and simple computation capabilities [1]. Most
sensor networks consist of a large number of inexpensive and low-
power wireless sensors, and usually achieve their objectives such as
localization and tracking in a distributed and cooperative way. Exist-
ing localization approaches for wireless systems based on direction-
of-arrival (DOA) or time-of-arrival (TOA) are not directly applicable
in sensor networks, due to the power/size constraints of sensors.

As a low-power and bandwidth efficient solution, recently bi-
nary sensor networks have been proposed for localization and track-
ing [2–4]. In a binary sensor network, the spatial topology (location
of all sensors) is usually assumed to be known. This could be re-
alized at the time of network deployment or through a location ser-
vice [5]. A typical sensor can only make a binary decision regarding
a target or object of interest, and consequently, only one bit infor-
mation needs to be sent from a sensor to a cluster head for further
processing. For example, in [2], a binary sensor model is proposed
in which a sensor can only detect whether a object is moving toward
or away from it. With two convex hulls (one is formed by sensors
returning one and the other is formed by sensors returning zero), the
moving direction of a target can be tracked. However, to distinguish
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two targets with the same direction, an additional proximity bit is
needed. A quadruplet of binary sensors are used in [3] to determine
the range of velocity slope, where the computation is done in a dis-
tributed manner. In [4], a sensor can only detect a target within a
certain range and returns a bit indicating whether a target is present
in this range. It uses a weighted average of the locations of detecting
sensors as the target’s estimated location. This method is effective in
tracking. However, each node needs to record the duration for which
the target is in its range.

All of the above methods assume error-free transmission from
sensors to a cluster head or a fusion center. More realistic binary sen-
sor networks with noisy links are considered in [6,7]. Target tracking
is formulated in [6] as a hidden state estimation problem over the fi-
nite state space of sensors, where the Viterbi algorithm is adopted to
track an object. Particle filtering is used in [7] to fuse information
collected from sensors. Although these two methods take noise into
consideration, the computation involved is highly complex.

In this paper, we develop a low-complexity target localization
and tracking method for noisy binary sensor networks. For simplic-
ity, we assume that a sensor sends a “1’ to a cluster head if a target
exists within its detection range, and a “0” if a target does not exist
within that range. The proposed method is based on a known net-
work topology where the cluster head relies on the intersection of
the detection areas of sensors to localize and track targets. Com-
pared to the existing approaches, our proposed method takes into
account noise in wireless links and yet remains low-complexity and
bandwidth efficient with minimum power consumption.

The rest of the paper is organized as follows. In Section 2, we
propose a low complexity target localization and tracking method
by exploiting known spatial topology of sensor networks. In Section
3, we analyze the error probability of the localization method under
the constraint of prediction errors. Monte Carlo simulation results
are presented in Section 4 to validate the theoretic analysis. Section
5 concludes the paper.

2. TARGET LOCALIZATION AND TRACKING

2.1. Target Localization Using Spatial Topology

Consider a sensor field with sensors distributed according to a cer-
tain topology. The sensor field can be classified into many sensor
clusters. Within each cluster, there are two types of sensors: a mon-
itor sensor (also called cluster head herein) and detecting sensors.
The monitor sensor is usually more powerful, and its job is to keep
in listening status and to wake up a group of detecting sensors (using
beacons) in a certain area to localize and track the targets in case a
target enters the sensor field. The detecting sensors have a certain
detection range. For simplicity, we assume that the range is a circle

II  10291424407281/07/$20.00 ©2007 IEEE ICASSP 2007



centered at the sensor with radius a. Because the minute size and
low-power consumption requirement, the detecting sensors are as-
sumed to have limited detection and communication capability. For
example, the detecting sensors can only detect whether or not a target
exists within its range and then send binary messages to the monitor
sensor. Monitor sensors can execute relative complicated calculation
and have a longer lifetime than detecting sensors.

Every active detecting sensor (sensor that has been waken-up)
transmits one bit of information to the cluster head per duty cycle.
The information could be coded to increase robustness against chan-
nel noise. For the simplicity of analysis, we assume that the uncoded
bit sent by the ith sensor is Di, and if a target is in the sensor’s de-
tection range, Di = 1, and otherwise Di = 0. Suppose that the
transmission power is ρ, then the received signal at the cluster head
from the ith sensor can be written as

xi =
√

ρDi + ni, (1)

where ni is additive white Gaussian noise with zero mean and vari-
ance σ2. Similar to [2], we assume that a proper media-access con-
trol (MAC) protocol is employed so that signals from different sen-
sors can be separated at the cluster head, and the sensor locations
(spatial topology) are known at the cluster head as well. The prob-
lem considered here is how to locate the target in the sensor field
from xi, i = 1, . . . , M , where M is the number of active sensors.

We use an example to illustrate our proposed localization
method in the following. In Fig. 1, suppose that S1, S2, S3, S4 are
four active detecting sensors. This area is partitioned into subar-
eas by the detection ranges of the four sensors. In this example,
the number indicates how many sensors among S1, S2, S3, S4 can
detect a target in each subarea. Each subarea is uniquely deter-
mined by the detection sequence. For example, if four active sen-
sors S1, S2, S3, S4 return a detection sequence [D1, D2, D3, D4] =
[1, 1, 1, 0], then the cluster head can determine that the target is lo-
cated at the subarea indicated with a “3” that is closest to sensor S1.

Apparently, the resolution of this low complexity localization
method is to the level of subareas, which may not be as high as
that offered by more sophisticated DOA or TOA based approaches.
However, when the density of the sensor field increases, this method
can also provide accurate localization that may be sufficient for many
applications, at extremely low complexity and power cost. An im-
portant component of the proposed scheme is how to wake-up a
group of detecting sensors. In the following, we present an energy
efficient wake-up strategy for localization and tracking of targets.

2.2. Tracking with Prediction Errors

When the network is set up, all monitor sensors communicate with
each other to divide the whole network region into some subregions.
They partition the region based on their neighboring monitor sen-
sors. Here we use region and subregion to differ from area and
subarea mentioned before. Suppose that a monitor sensor A1 has
four monitor neighbors: Ai, i = 2, . . . , 5. We use ⊥A1Ai to de-
note the bisector of A1Ai. Then the subregion enclosed by ⊥A1Ai,
i = 2, . . . , 5, is a subregion that is monitored by A1. Sensor A1 ac-
tivates binary sensors in its subregion if it is necessary and collects
information returned by binary sensors in the subregion.

All binary detecting sensors are waken up periodically to detect
possible targets. Once a target is detected for the first time, the mon-
itor sensor assigns a unique ID to the target. Suppose that a target
has been localized at least in two subareas in a sequence and the
centers of two subareas are respectively (xi−1, yi−1), (xi, yi) in a
two-dimensional coordinate. Then, the monitor sensor predicts the
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Fig. 1. An illustration of localization in a binary sensor network.

next position of the target as (2xi − xi−1, 2yi − yi−1), assuming
that the target moves in the same direction with a constant speed.
Therefore, the monitor sensor wakes up four sensors that are clos-
est to the target’s predicted location. The detection results of the
four sensors are sent back to the monitor sensor for further localiza-
tion and tracking decisions. If the predicted location is out of the
subregion covered by the current monitor sensor, it informs another
corresponding monitor sensor to continue to track the target.

The prediction of the target’s next location may have some error
due to randomness of the movement of the target. In this case, it may
be necessary to wake up more than four sensors to locate a target.
An illustration of the wake-up strategy is shown in Fig. 1. Suppose
that the monitor sensor determines that the target is within the square
formed by four sensors (indicated by S1 through S4). Then, the mon-
itor sensor wakes up these four sensors to further locate the target.
We refer this as the first round of detection. However, this prediction
may be wrong, e.g., if all four sensors return zero to the monitoring
sensor. In this case, a second round is necessary, in which the mon-
itoring sensor wakes up more sensors surrounding the initial square,
based on the assumption that even if a prediction is wrong, it is most
likely not very far away from the true location of the target. The
process can continue until the target is located or a pre-set threshold
on the number of sensors that can be waken up is met.

Specifically, for the square topology shown in Fig. 1, our wake-
up strategy works in the following way. In the first round, sensors
S1–S4 are waken up, and then

1. If three or more sensors return 1’s to the cluster head, the tar-
get is considered located. No more sensors need to be waken
up for this duty cycle.

2. If only one sensor (e.g., S3 in Fig. 1) returns a “1”, the cluster
head wakes up five more sensors (i.e., the five ones indicated
by dark-shaded triangles in Fig. 1) for a second round detec-
tion. Since the area covered by S3 but not S1, S2, and S4,
i.e., area A, can only be covered by one or more sensors of
the five dark-shaded ones.

3. If only two sensors on the same edge of the square (e.g., S2
and S4) return 1’s, the cluster head wakes up two more sen-
sors (i.e., the two lightly shaded triangles to the right of S2
and S4) for a second round detection, because the target can
be in areas 2, G, E, B, or F as shown in Fig. 1.

4. If only two sensors on the diagonal of the square (e.g., S1 and
S4) return 1’s, a localization error occurs and the four sensors
are asked to retransmit signals to the cluster head.

5. If no sensor returns a “1”, the cluster head wakes up all 12
sensors surrounding the square formed by S1–S4 for a second
round of detection.

II  1030



Depending on the result of the second round of detection if activated,
the monitor sensor may have to wake up additional sensors for a third
round detection, similar (but not exactly the same) to the procedure
describe above, which is omitted here due to space limitation. This
process continues until the target is located or a pre-set number of
rounds is reached due to energy limitation.

Because the communication channel is noisy, localization error
is unavoidable. In the following section, we analyze the probability
of localization error using the proposed localization mechanism, in
the presence of possible prediction errors of the monitor sensor.

3. ANALYSIS OF LOCALIZATION ERROR PROBABILITY

Taking into account the noise effect of the physical channel, the com-
munication between sensors and the cluster head is no longer perfect
(as shown in (1)). We first consider the localization error probability
when the prediction of the monitoring sensor is error-free, i.e., the
proper four sensors are waken up. Then, prediction error is taken
into account in our analysis.

3.1. Zero Prediction Error

At the cluster head, hard-decision is performed on the signal received
from each sensor. In other words, the cluster head decides whether
Di is 1 or 0 from xi in a maximum likelihood sense. Based on the
decisions, the cluster head can locate the target to a single subarea
in the field. However, if because of noise, the cluster head makes a
wrong decision on Di, then the target may be detected erroneously
in a wrong subarea. The localization error probability depends on
noise power σ2, signal power ρ, and the number of sensors involved.

From (1), it is ready to verify that the average probability of error
for the decision on each sensor’s signal (i.e., decide 1 as 0, or vice
versa) is Pe = Q(

√
ρ/(2σ)), where the Q-function is defined as

Q(x) = 1√
2π

∫∞
x

e−t2/2dt.

For the aforementioned square topology, correct localization of
target in a subarea requires correct decisions on signals sent by four
sensors if there is no prediction error. Therefore, the localization
error probability is Psquare = 1− (1− Pe)

4.
Suppose that the number of subareas in a sensor field is N , and

the localization error probability for the nth subarea is Rn. If the
location of the target is uniformly distributed in a sensor field, then
the average localization error probability of the sensor network is

P =

N∑

n=1

anRn, (2)

where an is the normalized area for the nth subarea. According to
(2), one has to consider network topologies case by case to obtain
the exact probability of localization error. However, a good approxi-
mation can be obtained for a type of networks where the sensors are
uniformly placed in the field, which is stated as follows.

Proposition 1 Suppose that a sensor field has a total area A, the
detection area of each sensor is c, and the number of sensors in the
field S. If the sensors are uniformly placed in the field, then the
average error probability in (2) can be approximated as:

P̄ = 1− (1− Pe)
k, with k := �cS/A�. (3)

Using (3), we can calculate that for the square topology, the pa-
rameter k is k =

⌈
πa2N/(a2N)

⌉
= 4. Thus, according to Proposi-

tion 1, the approximate localization error probability with the square
topology is P̄square = 1− (1− Pe)

4, which matches Psquare.

3.2. Non-zero Prediction Error

We use the square topology as an example again to analyze the local-
ization error probability in the presence prediction error. We assume
that the actual location of the target follows a distribution f(x, y)
with respect to the predicted target location (xo, yo).

Let Ps(i) be the probability that the target is located in the
square region surrounded by the sensors waken up till the ith round,
which can be calculated as Ps(i) =

∫
S(i)

f(x, y)dxdy, where S(i)

denotes the area surrounded by the sensors waken up till the ith
round. Let Pi(j) denote the probability that a target is covered by
j sensors waken up till the ith round. We can calculate Pi(j) as
Pi(j) =

∫
C(i,j)

f(x, y)dxdy, where C(i, j) is the area covered by

j sensors till the ith round. For example, as shown in Fig. 1, C(1, 3)
is the area of the four subareas indicated with a “3”.

If only one round of detection can be used, the localization er-
ror probability is given by P1 = 1 − (1− Pe)

4 Ps(1). If up to
two rounds of wake-up is possible, the localization error probabil-
ity can be calculated as follows. We first activate four sensors to
detect the target. If they return three or more 1’s and the monitor
sensor has detected them correctly, the target is properly localized.
This situation can occur only when the target is located in subar-
eas of the first square covered by three or more sensors. Therefore,
the probability that the target can be localized in the first round is
(1 − Pe)

4(P1(3) + P1(4)). If only one sensor returns 1, accord-
ing to our wake-up strategy, five additional sensors are activated.
Now the decision of the monitor sensor is based on information
of 4 + 5 = 9 sensors, so the probability of correct localization in
this case is given by (1 − Pe)

9P1(1). If two sensors on the same
edge of the square return 1, two more sensors are activated. The
probability of correct localization is (1 − Pe)

6P1(2). If no sen-
sor returns 1 in the first round, twelve more sensors are activated.
In this case, the target may be located in subareas such as C and
H or outside of the area covered by the second round as shown
in Fig. 1. The probability of correct localization in this case is
(1 − Pe)

16(Ps(2) − P1(1) − P1(2) − P1(3) − P1(4)). There-
fore, if up to two rounds of detection are allowed, the localization
error probability is given by

P2 =1− (1− Pe)
4(P1(3) + P1(4))− (1− Pe)

6P1(2)

− (1− Pe)
16(Ps(2)− P1(1)− P1(2)− P1(3)− P1(4))

− (1− Pe)
9P1(1). (4)

It can be shown that if up to n rounds of wake-up are allowed,
the error probability is given by (for n ≥ 3)

Pn =1− (1− Pe)
4(P1(3) + P1(4))− (1− Pe)

6P1(2)

− (1− Pe)
9P1(1)− (1− Pe)

16
[
Ps(2)− P1(1)

− P1(2)− P1(3)− P1(4)
]
−

n∑

i=3

{
(1− Pe)

(4(i−1)2+2)

· Pi−1(2) + (1− Pe)
(4(i−1)2+3)Pi−1(1) + (1− Pe)

4i2

· (Ps(i)−
4∑

h=1

Pi−1(h))
}

. (5)

4. SIMULATION RESULTS

We present the Monte Carlo simulation results to validate the per-
formance analysis on localization error probability of the proposed
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Fig. 2. Comparison of localization error probability when a maxi-
mum of two and three rounds of sensor wake-up is allowed. “Theo”
stands for theoretic analysis results, and “Simu” stands for simulated
results.

scheme. Suppose that each sensor’s detection range is of unit length.
A square sensor field of side length 200 units is covered by sensors
deployed with a square topology. The received signal-to-noise ratio
(SNR) at the cluster head is defined as ρ/σ2. There is one target
to be localized in each realization. For each SNR value, we gen-
erate 5 × 106 realizations of random target locations in the sensor
filed. We assume that the actual location of the target follows the
2-dimensional standard normal distribution with respect to the pre-
dicted target location (xo, yo).

In Fig. 2, we plot the localization error probability of the pro-
posed scheme under different wake-up rounds and prediction errors,
where Pm denotes the monitor sensor’s prediction error probability.
When Pm = 0, four sensors are waken up and only one round of
detection is necessary. When Pm > 0, up to two or three rounds
of detection are allowed. It can be seen from Fig. 2 that the simula-
tion results match well with the theoretic analysis results in all cases.
An error floor is observed for the cases when the prediction error is
large, which is due to the fact that a certain percentage of the targets
are out of the area covered by all wake-up sensors in the maximum
allowable rounds.

When the prediction error is large, we may increase the allow-
able wake-up rounds to reduce the probability of localization error. If
we compare the localization error probabilities when a maximum of
two and three rounds of detection are allowed, it is clear that an ad-
ditional round of wake-up sensors can significantly reduce the local-
ization error probability (e.g., by more than one order of magnitude
with 80% prediction error, and more than two orders of magnitude
with 60% prediction error).

For the purpose of comparison, our tracking simulation setup
is similar to that of [8]. Sensors are deployed in a 600m × 600m
square region. Every sensor’s normal communication range is 35m
and the sensors are deployed according to the square topology. We
simulate the miss probability under different sensor radius to target
speed ratios, as we find that this ratio affects the performance most.
For each sensor radius to target speed ratio, we perform our tracking
algorithm and the Distributed Predictive Tracking (DPT) algorithm
of [8] at 1000 tracking points. DPT uses triangulation for localiza-
tion. Fig. 3 shows the simulation result. From Fig. 3, we can see
the miss probability decreases with the increasing of sensor radius
to target speed ratio. When the sensor radius to target speed ratio is
smaller than 27, our method has lower miss probability. When the
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Fig. 3. Comparison of tracking miss probabilities of our proposed
method and DPT under different sensor radius to target speed ratios.

ratio is bigger than 27, DPT’s miss probability is marginally smaller
than ours. Moreover, a ratio greater than 27 corresponds to the de-
ployment such that sensors are far away from each other or the tar-
get’s speed is very low.

5. CONCLUSIONS

We have proposed a low-complexity target localization and tracking
method by exploiting spatial topology of a binary sensor network in
noisy environments. An efficient wake-up strategy is used to activate
a particular group of sensors for cooperative localization and track-
ing. We have studied the localization error probability and tracking
miss probability with possible prediction errors. Monte Carlo simu-
lation results validate our theoretic analysis. It is shown that in the
presence of prediction errors, additional round of sensor wake-up
can significantly reduce the localization error probability. The pro-
posed tracking strategy also offers competitive performance in terms
of miss probability when compared to the existing approaches that
require much higher complexity and more complicated sensors.
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