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Abstract. We propose a pairwise mutual information based 
regularization technique for maximum likelihood sensor fusion in 
dense distributed sensor networks. The principle is demonstrated in 
target localization and tracking using a dense binary motion sensor 
network under a centralized data fusion framework. Simulations 
demonstrate that the information regularization enables the 
maximum likelihood localization procedure to provide significantly 
more accurate target position estimates compared to its 
unregularized counterpart, which is the current benchmark. The 
extensions of the information regularization principle to various 
sensor and data fusion problems such as outlier detection, and sensor 
failure identification are discussed. 
Keywords: sensor networks, decision fusion, information theoretic 
learning, maximum likelihood 
 
1. INTRODUCTION 
 Recent advances in cheap, low-power, and reliable integrated 
sensing and processing devices with wireless communication 
capabilities have stimulated research on distributed sensing for 
various detection, tracking, and localization applications [1-4] 
ranging from geophysical and environmental studies [5] to remote 
health monitoring systems [6]. Distributed dense networks of simple 
(binary) sensing devices (motion and contact sensors) have received 
special attention in application domains, such as monitoring of 
elderly in their homes for early diagnosis of various neurological 
disorders, that require cheap distributed sensing and processing 
power. Optimal Bayesian decision rules for binary distributed 
detection networks have been studied by Chair & Varshney [7], 
Tsitsiklis [2], and other researchers. Varshney [1] discusses these 
various fusion criteria in detail. When sensing distributed 
phenomena with spatially varying characteristics, these original 
approaches must be modified to account for the need for sensor-
location dependent hypotheses. Similarly, the individual detection 
characteristics of sensors (such as false alarm and miss probabilities 
for motion sensors) might vary due to various reasons including 
manufacturing imperfections and setup variations. Along these 
required improvement directions, recently Rodriguez, Tong, and 
colleagues have published a series of papers where they address 
maximum likelihood decision fusion taking source localization with 
distributed binary motion networks as the testbed [8,9]. 
 On a parallel course, there is interest in building cognitive 
devices that utilize machine learning techniques to learn the 
characteristics of the environment in which they operate in order to 
exploit statistical commonalities to modify their operating mode for 
the purpose of improving their performances [10]. Similarly, sensor 
networks that observe statistically stationary or slowly varying 
nonstationary phenomena can exploit various statistical machine 
learning concepts to improve their performance above what one 
would obtain through standard maximum likelihood (ML) type 
Bayesian estimation approaches. Clearly, in the ideal case, the 
sensor network would have accurate knowledge of the prior 
distribution of the phenomenon being observed and augment its 
decision/estimation using this prior in a maximum a posteriori 

(MAP) context. Obtaining such detailed prior information is 
expected to run into a couple of practical difficulties including: (i) 
the distributed nature of the phenomenon prevents the network from 
acquiring sufficient data to accurately learn the prior with small 
amounts of training data, (ii) the global nature of the prior prevents 
decentralization of estimation rules. Although the main goal of 
distributed sensing is to achieve decentralized processing and 
decision fusion, in order to avoid energy-expensive wireless 
communication between sensing units [11], the optimal detection 
and localization performance can normally be achieved only through 
centralized optimization of Bayesian criteria. In the case of 
uninformed sensors where the history of target and sensor activity is 
not remembered, such Bayesian approaches require equal 
consideration of every sensor. If some prior knowledge about target 
behavior can be encapsulated through past sensor activity, the 
sensors can be ranked according to their relevance to the behavior of 
the target phenomenon, thus might reduce communication 
requirements drastically. 
 In this paper, we propose the information regularized maximum 
likelihood (IRML) estimation principle for target localization with 
binary detection sensor networks. The IRML principle utilizes 
pairwise mutual informations between sensor measurements to 
condense the prior information into weights that are utilized to 
modify the relative importance of each sensor in the ML estimation 
procedure. In the target localization framework using motion 
sensors, the IRML framework is shown to improve localization 
accuracy significantly at minimal additional computational load per 
sensor to evaluate the pairwise mutual information matrix.  
 
2. PROBLEM STATEMENT 
 We specifically consider the problem of target localization and 
tracking with distributed motion detector networks. In this paper, we 
do not utilize the recursive Bayesian state estimation framework 
[12,13] and rather focus on instantaneous target localization using 
the sensor ensemble response. However, the temporal information is 
still incorporated in tracking by initializing the IRML algorithm to 
its estimate in the previous time step. Each detection sensor is 
assumed to be sensitive to target motion in a radially symmetric 
fashion with monotonically decreasing detection probability with 
increasing sensor-target distance. More formally, the conditional 
probability of the sensor firing (indicating detection) given target 
and sensor positions satisfies: 
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Typically, a one-sided Gaussian profile is assumed for this function 
as a convenient form, but not necessarily the best model for real 
sensors. Here, we employ the one-sided Gaussian model for sensor 
detection probability as well: 

II  10211424407281/07/$20.00 ©2007 IEEE ICASSP 2007



  (2) 
22 /||||)1(),|1( h

st
stefp xxxx

where h is the half-detection probability range (||xt-xs||=h implies 
p(f=1|xt,xs)=0.5). Given a sensor network with sensor locations 
{x1,…,xn} and a firing pattern (snapshot) of the sensor network, the 
ML estimate for the target location is the solution to the following 
maximization problem: 
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This ML solution does not take into account any prior knowledge 
about the target location distribution. The MAP estimate, on the 
other hand, would utilize such prior distribution information p(xt) to 
augment (3) into: 
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Neither (3) nor (4) have analytical solutions in general, therefore 
iterative optimization algorithms must be utilized. Furthermore, 
obtaining the prior accurately required for the third term in (4) is 
difficult at best. Assuming an inaccurate prior is known to bias the 
solutions towards erroneous estimates especially for smaller 
networks. 
 
3. PAIRWISE MUTUAL INFORMATION REGULARIZED 
MAXIMUM LIKELIHOOD 
 Consider a distributed motion sensor network that is deployed 
to provide target detection and localization coverage over a region 
R. Suppose that the sensor network is exposed to a (quasi-) 
stationary target acceleration profile with distribution p(A), where 
the targets enter the region R from a subset B of the boundary of R 
according to a distribution p(B). It is expected that as each target 
passes through R through some random trajectory T, the sensors in 
the network fire in a certain order consistent with the trajectory T. If 
T for each target is drawn from a stationary distribution, the sensor 
network will, on average, provide statistically correlated firing 
patterns. The term correlated is used in its broader meaning 
including nonlinear and discrete-valued correlations between point-
processes. Let fi(T) be the random sequence of firing (0’s and 1’s) of 
sensor i as the target follows trajectory T. It is expected that the 
mutual information between the firing sequence of sensors i and j, 
denoted by I(fi(T),fj(T)) evaluated over many trajectories will be 
large for sensors that fire and remain silent simultaneously (sensors 
that detect the target at the same time) and will be small for sensors 
that detect the target in an asynchronous manner (with time lag). 
Two sensors that never detect the target (allowing occasional false 
detection firings) will exhibit almost zero mutual information. 
According to the sensing model (1), the expected pairwise mutual 
information graph (where Iij is the edge strength) will connect 
neighboring sensors located at regions with high values of 
p(xt)/p(f1,…,fn) while isolating sensors in regions where this ratio is 
small. 
 By definition, the mutual information between sequences fi(T) 
and fj(T) is calculated using the joint and marginal distributions of 
these sequences: p(fi(T),fj(T)), p(fi(T)), and p(fj(T)) averaged over 
multiple target trajectories: 
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In practice, this quantity between long sequences require the 
estimation of exponentially large discrete joint distributions 
(increasing in size with the length of the sequences). Assuming that 
each sensor exhibits independent firing behavior at each time step of 
Tk of the trajectory the joint distribution of each sensor’s firing 
sequence over T becomes separable into the product of firing 
probabilities at each time step: p(fi(T))=p(fi(T1))  p(fi(TN)). 
Similarly, assuming the firing behavior of each pair of sensors ae 
assumed to be independent from their pairwise behavior at 
previous/other time steps, therefore, we obtain the separability of the 
overall joint distribution into the product of pairwise joint firing 
behavior at each time step: p(fi(T),fj(T))=p(fi(T1),fj(T1))  
p(fi(TN),fj(TN)). These two assumptions simplify the computational 
and practical difficulties posed by the high dimensionality of (5) and 
reduces to bivariate mutual information: 
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In practice, the pairwise mutual information between sensors i and j 
is estimated using firing sequences obtained from both sensors as 
multiple training targets pass through the detection field (training 
targets can be previously tracked targets and the mutual information 
based pairwise statistical sensor similarity can be recursively 
updated in real time to handle nonstationary target behavior; this 
will be the topic of a future publication). Given concatenated firing 
sequences fi(T) and fj(T) for many target trajectories, the joint and 
marginal firing probabilities p(fi,fj), p(fi), and p(fj), where fi, fj 

{0,1} are estimated by relative occurrence frequencies. 
 Since a sensor that is at a central location for a given target 
dynamics is expected to have large mutual information with its 
nearby neighbors, a normalized importance weight based on the 
pairwise mutual informations in (5) can be assigned to each sensor  
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The information regularized maximum likelihood (IRML) criterion 
for target localization is obtained by modifying (3) using the weights 
appointed to each sensor as in (7): 
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This modification corresponds to the following assumption 
regarding the joint data likelihood: 
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Consequently, the data likelihood becomes a regularized geometric 
mean where the weights are determined by statistical sensor fitness 
as measured by the pairwise mutual information matrix. 
 The IRML estimator is obtained by maximizing (8) using a 
fixed point iterative algorithm similar to the mean-shift clustering 
algorithm [14], which is equivalent to expectation maximization. 
For the firing model of (3) with = , taking the gradient of (8) with 
respect to xt, equating to zero and rearranging terms yields the 
following simple iterative optimization rule, which is optimized to 
the previous IRML estimate of the target position at every new 
estimation time step: 
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4. EXPERIMENTAL RESULTS 
 In this section we present experimental results for a network 
consisting sensors with detection probabilities of the form given in 
(1). We compare results obtained using the maximum likelihood 
estimator of (3) and the information regularized maximum 
likelihood estimator of (8). For illustration simplicity, we utilize 
uniform sensor grid models in the following experiments, however, 
this uniformity is not necessary and sensors can be randomly 
deployed in the detection field according to any distribution without 
much consequence (provided that some sensors are actually placed 
at positions where they can sense the target). 
 We start with the comparison of the performances of ML and 
the proposed information regularized ML estimators. The mean 
localization errors are averaged over 100 Monte Carlo runs using the 
following random walk target trajectory model 
  (11) vxx )()1( kk tt
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Figure 1. Mean of the distance between the actual target position and
the estimated location in 100 Monte Carlo simulations for a 10 10
uniform sensor grid as a function of false alarm (detection)
probability: ML (solid), IRML (dashed). 
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Figure 2. Target trajectories using the random walk model given in
(11) for 20 sample Monte Carlo simulations. 

where =[0.01,0]T and v is a circular bivariate Gaussian random 
variable with covariance (0.0052I). Keeping the miss probability 
constant at =0.1, a 10 10 uniform sensor grid is trained on a 1 1 
square detection field. The mean localization error of ML and IRML 
estimators are presented as a function of varying false detection 
probability of the sensors. The IRML estimator significantly 
outperforms the ML estimator in target localization. Figure 2 
illustrates the distribution of target trajectories for 20 representative 
Monte Carlo runs. For the same random walk model, Figure 3 
illustrates the behavior of information regularization weights over 
the sensor network (actual physical location) for a 20 20 uniform 
grid of sensors. Although we cannot offer an analytical proof at this 
time, visual inspection in numerous Monte Carlo experiments with 
different random walk models demonstrate that the spatial weight 
distribution approximates the target prior distribution closely. The 
sensors that lie in a portion where the target is present with a higher 
probability, we observe higher pair-wise mutual information; hence, 
higher weights. The sensors where the pdf is low, the outputs are 
mainly false alarms and the corresponding weights are low, 
suppressing misleading sensor activity. 
 In a second comparison of IRML and ML, we compare the 
mean localization error versus density of sensors (simulated by 
keeping the number of sensors fixed and reducing the detection field 
area, sensor half-detection distances, and the random walk mean and 
standard deviation proportionally). In this experiment, the false 
alarm and miss probabilities are both set to 0.1. Figure 4 shows the 
average localization error over 100 Monte Carlo simulations at each 
sensor density level. IRML significantly outperforms ML and the 
performance gap increases for denser networks. 
 
5. DISCUSSIONS 
 The advent of cheap, low-power, reliable sensors enable the 
exploitation of dense sensor networks for solving various traditional 
problems such as detection, localization, and tracking in a 
distributed manner. Bayesian techniques for sensor fusion in 
idealized static situations such as no-sensor-failures, no-a-priori-
target-information, and no-sensor-self-organization have been 
studied in detail and are now well understood. Contemporary 
challenges in sensor network research include incorporating 
machine learning techniques and statistical reliability measures into 

data fusion criteria in order to enable sensors to exploit patterns in 
past-observed activity of the target phenomenon and 
decentralization and optimization of decision fusion under various 
power and bandwidth constraints. In this paper, we proposed the 
information regularization principle based on pairwise sensor 
activity mutual information estimates in order to tackle the first 
issue mentioned above. 
 The information regularization principle is based on the 
assumption that the observed distributed phenomenon exhibits 
spatial correlations that can be captured by sensor activity 
correlations, as well as being (quasi-)stationary. The two 
assumptions lead to the expectation that the sensor network will 
comprise of sensors that behave in a statistically similar manner. 
This similarity can be best measured nonparametrically by the 
pairwise mutual information between the activities of two sensors. 
Due to the spatial correlations exhibited by the target phenomenon, 
the sensor activities exhibit strong correlations between sensors 
measuring statistically nearby aspects of the observed variable. 
Consequently, such sensor pairs develop a strong mutual 
information connection indicating measurement redundancy. 
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 The redundancy between sensors can be exploited in a variety 
of ways depending on the application and the circumstances. For 
example, one can utilize the pairwise mutual information graph as a 
similarity matrix between the sensor pairs, thus enabling the abstract 
clustering of sensors into similar sensor groups, where similarity is 
measured by the amount of common information. Such clustering 
enables us to reorganize the sensor network more efficiently to 
maximize the information diversity of the overall network under the 
given target phenomenon statistics. This network reorganization 
could be achieved in a self-organizing manner if the sensor units 
have the ability modify their sensing parameters including their 
physical location and orientation. The information-cluster structure 
in the network could also be exploited to identify sub-networks that 
could form automatically to minimize unnecessary network-wide 
communications and enable a hierarchical decision fusion scheme, 
as well as enabling selective sensor communication based on past 
information relevance. Alternatively, the sensor similarity can be 
utilized to identify sensor failures. Temporal evolution of the 
pairwise mutual information matrix can be exploited to identify 
sensors that change their co-sensing behavior unexpectedly, possibly 
due to a failure. 
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Figure 3. Information regularization weights over the sensor field
using 100 realizations of the random walk model in (11) as training
data. 
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Figure 4. Mean error distance for sensor networks of different
spatial density: ML (solid), IRML (dashed). 

 In this paper, we have focused on the application of 
information regularization on incorporating prior sensing experience 
into the Bayesian sensor fusion framework through a modified 
maximum likelihood target localization criterion that emphasizes 
sensors that exhibit higher statistical collective activity, under the 
assumption that these sensors are most likely sensing relevant and 
consistent information. The information regularization reduces the 
effect of outlier sensors that fire falsely without the presence of a 
target in their neighborhoods, thus improve localization accuracy 
compared to maximum likelihood significantly. Future work will 
focus on extending the application of this principle to potential 
problems discussed above, as well as formulating a stronger 
connection between the pairwise mutual information based weights 
and Bayesian priors on target phenomena. 
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