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Abstract—We study the impact of the topology of a sensor
network on distributed average consensus algorithms when the
network links fail at random. We derive convergence results. In
particular, we determine a suf cient condition for mean-square
convergence of the distributed average consensus algorithm in
terms of a moment of the distribution of the norm of a function
of the network graph Laplacian matrix L (which is a random
matrix, because the network links are random.) Further, because
the computation of this moment involves costly simulations, we
relate the mean-square convergence to the second eigenvalue
of the mean Laplacian matrix, λ2(L), which is much easier to
compute. We derive bounds on the convergence rate of the algo-
rithm, which show that both the expected algebraic connectivity
of the network, E[λ2(L)], and λ2(L) play an important role
in determining the actual convergence rate. Speci cally, larger
values of E[λ2(L)] or λ2(L) lead to better convergence rates.
Finally, we provide numerical studies that verify the analytical
results.

Index Terms—Consensus, Topology, Laplacian, Link Failure,
Random Matrix.

I. INTRODUCTION

In this paper, we establish convergence properties for arith-
metic mean consensus in large sensor networks as a function
of the network topology. The algorithm is distributed. Inter-
sensor communication at each step is local and determined by
the underlying connectivity network. Distributed consensus is
a well-studied problem and has many applications, see [1], [2],
[3]. These papers assume that the network topology is xed
or evolves deterministically with time, which is unrealistic
in many applications. Ref. [4] considers the problem of
determining link weights for optimizing convergence speed for
a xed network. Ref. [2] designs both the optimum weights
and the topology of the sensor network. The present paper
focuses on the design and analysis of a distributed consensus
algorithm for networks with random links, as opposed to the
deterministic cases discussed above. Such a situation occurs
in sensor networks with unreliable communication links. A
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link failure is a common scenario in noisy communication
channels, where random transmission errors can be treated
as a communication failure. A similar situation may arise in
networks with limited power budget, where the network may
need to shed links at times to meet the power constraint. We
model such link failures by a random eld. The convergence
analysis of any distributed algorithm on such a network is a
dif cult problem, because the behavior depends on the actual
probability distribution of the topology of the network. A
similar type of problem is considered in [5], but the network
is modeled as a complete graph, with identical link failure
probabilities for all the links. In this paper, we establish results
for generic network topologies and distributions and show
that the convergence properties of the consensus algorithm are
related to the moments of the probability distribution of the
eigenvalues of related network matrices. These moments are
dif cult and expensive to compute. To avoid this expense, we
relate the convergence properties of the distributed consensus
algorithm to the second eigenvalue of the average Laplacian
matrix. This average Laplacian matrix is much easier to eval-
uate as will be shown. Numerical studies verify our analytical
results.
A brief outline of the rest of the paper follows. Section II
explains elementary spectral graph theory concepts. Section III
describes the distributed consensus algorithm. Section IV
contains the main mean-square convergence theorems, while
Section V presents performance bounds. Numerical studies are
in Section VI. Finally, Section VII concludes the paper.

II. SPECTRAL GRAPH THEORY
We de ne a graph G = (V, E) as a 2-tuple, consisting of a

set V of N vertices (sensors in our application) and a set E of
M edges. We denote an edge between vertices n and l as an
unordered pair (n, l), where the presence of an edge between
two vertices indicates they can communicate with each other.
A simple graph is a graph without loops and multiple edges.
Unless otherwise stated, all the graphs considered in this paper
are simple. To each graph we assign an N × N adjacency
matrix A, given by

An,l =
{
1 if (n, l) ∈ E
0 otherwise (1)

II  10131424407281/07/$20.00 ©2007 IEEE ICASSP 2007



The neighborhood of a vertex n is de ned as

Ωn = {l ∈ V : (n, l) ∈ E} , ∀n ∈ {1, ..., N} (2)

The degree of a node is the number of edges emanating from
it and is given by

dn = |Ωn|, ∀n ∈ {1, ..., N} (3)

In a similar manner, we de ne the N × N Laplacian matrix
L of the graph as

L = D − A (4)

where, D = diag(d1, ..., dN ) is the degree matrix. L is a
symmetric positive semide nite matrix, so all its eigenvalues
are non-negative. We can arrange them as follows:

0 = λ1(L) ≤ λ2(L) ≤ ... ≤ λN (L) (5)

The multiplicity of the zero eigenvalue is the number of
connected components and λ2(L) is called the algebraic
connectivity or the Fiedler value of the network. For connected
graphs λ2(L) > 0, see [6].

III. PROBLEM FORMULATION AND DISTRIBUTED
CONSENSUS ALGORITHM

We model the network of N sensors at an arbitrary time
index i by a graph G(i) = (V, E(i)), where E(i) denotes the
edge set at time i. Since the network is dynamic, E(i) changes
over time. Speci cally, because of the random link failures, we
assume that E(i) is a random subset of E ∈ V × V , where
E denotes the set of realizable edges (i.e., E(i) = E iff there
is no link failure.) We model randomness by assuming that
an edge in E may fail or become alive independently of the
other edges with some probability. For (n, l) ∈ E , we denote
by 0 ≤ Pnl ≤ 1 the probability that an edge exists between
sensors n and l at any arbitrary time i. We thus de ne the
N × N probability of edge formation matrix P as

Pnl =
{
Probability of edge (n, l) if (n, l) ∈ E
0 otherwise (6)

Thus the edge set E(i) at each time i is the random subset of
the set of realizable edges E formed according to the entries
of the P matrix.
Let us assume that the sensors measure or have some initial
data at time i = 0. We stack them in a vector, which we call
the initial state vector x(0) ∈ R

N×1. Let us de ne the average
of the initial state x(0) as

r =
1T x(0)

N
(7)

where 1 denotes the vector of all ones. The purpose of the
consensus algorithm is to compute the mean r at each sensor,
given any initial state vector x(0), using linear distributed
iterations, see [4]. We thus consider the linear update of the
state of each sensor n at time i using only local data exchange,
given by

xn(i+ 1) = Wnn(i)xn(i) +
∑

l∈Ωn(i)

Wnl(i)xl(i) (8)

Writing in a matrix-vector format, the above update equation
becomes

x(i+ 1) = W (i)x(i) (9)

where W (i) gives the weight matrix at time i. The sparsity
pattern of W (i) is determined by the underlying network
connectivity, i.e., for n �= l, Wnl(i) = 0 if (n, l) /∈ E(i).
There can be different choices for the weight matrix W (i),
see [4] for the deterministic case. We consider the following
scheme for choosing the matrix W (i)

W (i) = I − αL(i) (10)

where α is a constant independent of time i. This means that,
at each stage i of the iteration, we give an equal weight α
to every available link. Also, from an implementation point
of view, it follows that such a weight assignment is easiest to
implement, because no processing is required for computing
the weights.
From eqn.(10), we note that W (i) is a random matrix for all
i, since the network and hence the Laplacian L(i) is random.
It also follows from our previous discussions that the L(i)’s,
and so the W (i)’s, are independent and identically distributed
(in the sequel when we refer to the probability distributions
of W (i) and L(i), we drop the indices and use W and L
respectively.) This makes the state x(i) a random vector, and
hence the convergence properties of the algorithm must be
interpreted in probabilistic terms.

IV. MEAN SQUARE CONVERGENCE

Let us de ne the vector of averages as

xavg = r1 (11)

where r is given in eqn.(7). Starting from an initial state x(0),
we say that the state vector converges to the desired mean
vector xavg if

lim
i→∞

‖ x(i)− xavg ‖2= 0 (12)

where ‖ · ‖2 denotes the standard Euclidean norm. However,
as shown in the last section, {x(i)}i∈I , I = {1, 2, ...} is
a random process, and hence sample-wise convergence (see
eqn.(12)) is too restrictive and not interesting to deal with.
Hence, we consider mean-square convergence of the process.
Thus, we say that, given any initial state x(0), the algorithm
converges in the mean-square sense if

lim
i→∞

E ‖ x(i)− xavg ‖2= 0 (13)

We now establish a suf cient condition for the mean-square
convergence of the distributed algorithm. This will be possible
because we assume noiseless communications. First, we prove
a lemma.

Lemma 1 For any x(0) ∈ R
N×1, we have,

‖ x(i+ 1)− xavg ‖2

‖ x(0)− xavg ‖2
≤

i∏
j=0

ρ

(
W (i − j)− 1

N
J

)
(14)
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where J = 11T and ρ(·) denotes the spectral radius.
Proof: Since W (i) is a symmetric matrix, we can

decompose it using orthonormal eigenvectors and get

W (i) = UΛUT (15)

where U = [u1...uN ] is the matrix of orthonormal eigen-
vectors and Λ is the diagonal matrix of eigenvalues. From
eqn.(10), it follows that the eigenvalues of W (i) are

λk(W (i)) = 1− αλk(L(i)), ∀k ∈ {1, ..., N} (16)

Using eqn.(5), we note that λ1(W (i)) = 1 with the corre-
sponding eigenvector u1 = 1√

N
1. Also (see [2]),

ρ

(
W (i)− 1

N
J

)
= max (|λ2(W (i))|, ..., |λN (W (i))|)

(17)
It can be shown from eqns.(16,17) that

‖ x(i+1)−xavg ‖2≤ ρ

(
W (i)− J

N

)
‖ x(i)−xavg ‖2 (18)

where we use the fact that J
N W (j) = J

N , ∀j (see [2].) The
proof follows by using eqn.(18) repeatedly. Recall thatW (i)’s
are i.i.d. and we refer generically to them as the random matrix
W .

Theorem 2 The consensus algorithm converges in the mean
square sense for any x(0) ∈ R

N×1 if E
[
ρ

(
W − J

N

)]
< 1.

Proof: From eqn.(14) it follows that

E ‖ xi − xavg ‖2≤
(
E

[
ρ(W − 1

N
J)]

])i−1

‖ x0 − xavg ‖2

(19)
where we use the fact that the W (i)’s are i.i.d. Hence, if
Eρ

[(
W − J

N

)]
< 1,

lim
i→∞

E ‖ x(i)− xavg ‖2= 0 (20)

Theorem 3 Let L = E[L]. Then a suf cient condition for
mean-square convergence is λ2(L) > 0. In other words, we
have mean-square convergence if the average network, L, is
connected.

Proof: We give a constructive proof. We show that, if
λ2(L) > 0, we can nd an α for which E

[
ρ

(
W − J

N

)]
< 1.

Convergence then follows from theorem 2.
We recall a result from spectral graph theory, which states that
a graph is connected, (i.e., λ2(L) > 0), iff the corresponding
adjacency matrix A is irreducible, see [7]. We note that the
expected or mean adjacency matrix A = E[A] = P , where P
is given in eqn.(6). It follows that,

L = D − A (21)

where D = E[D]. Since A assumes the form of a weighted
adjacency matrix (entries are not necessarily 0 or 1), applying

the same result (see [7]), we get,

λ2(L) > 0⇔ A is irreducible (22)

The irreducibility of A suggests that with non-zero probability
we have graph realizations for which λ2(L) > 0. In particular,
we can have a realization for which the edge set E = E
and clearly this network is connected (the adjacency matrix
in this case has the same sparsity pattern of A, with non-zero
entries of A replaced by ones.) This shows that, with non-zero
probability, λ2(L) > 0, which makes E[λ2(L)] > 0. Thus, we
have

λ2(L) > 0⇒ E[λ2(L)] > 0 (23)

We now use another spectral graph theory result, which states
that, for any graph G,

λN (L) ≤ 2dmax(G) (24)

where dmax(G) denotes the maximum vertex degree of G,
see [7]. For our case, let lmax be the maximum degree of the
graph with edge set E = E . Then, from eqn.(24), it follows
that, for all realizable networks,

λN (L) ≤ 2lmax (25)

We now claim that the algorithm converges in the mean-square
sense for the following choice of α

αms =
1

2lmax
(26)

Then, using eqns.(16 and 17), we get

ρ

(
W − J

N

)
= 1− αmsλ2(L) (27)

From this it follows that

E[ρ(W − J

N
)] = 1− 1

2lmax
E[λ2(L)] < 1 (28)

and mean square convergence follows from theorem 2. Thus,
if λ2(L) > 0, we can choose an α for which the algorithm
converges.
Theorem 3 is very signi cant in the sense that it relates the
convergence properties directly to the probability distribution
of the graph Laplacian L. In particular, it shows that for
mss convergence connectivity on the average is suf cient. The
choice of αms in eqn.(26) is easily obtained from E .

V. PERFORMANCE BOUNDS

Theorem 2 suggests that a smaller value of E[ρ(W − J
N )]

results in a faster convergence. The value of E[ρ(W − J
N )]

depends on the choice of α. Thus for the fastest convergence
rate we must choose α that minimizes the function

C(α) = E[ρ(W − J

N
)] (29)

Let α∗ be the minimizing α. Also, let

C∗ = inf
α
E[ρ(W − 1

N
J)] (30)

II  1015



We call Sc = 1/C∗ the best achievable convergence rate. We
note from Theorem 3 that

Sc ≥ 1/C(αms) (31)

=
1

1− E[λ2(L)]/2lmax

Eqn.(31) shows that a higher value of E[λ2(L)] gives a better
convergence rate. We now try to relate Sc with λ2(L). From
the properties of Laplacians (see [6]), it can be shown that
λ2(L) is a concave function of L. For completeness, we
include the following proof.
Let us take any 0 ≤ t ≤ 1 and Laplacians L1 and L2. It
follows from the Courant-Fischer theorem

λ2(tL1 + (1− t)L2) = min
z⊥1

zT (tL1 + (1− t)L2)z (32)

≥ tmin
z⊥1

zT L1z+ (1− t)min
z⊥1

zT L2z

= tλ2(L1) + (1− t)λ2(L2)

which proves the concavity of λ2(L). Then, using Jensen’s
inequality, we get

E[λ2(L)] ≤ λ2(L) (33)

This together with eqn.(31) suggests that an increase in λ2(L)
should lead to better convergence rates.

VI. NUMERICAL STUDIES
Eqn.(31) suggests that mss convergence rate increases with

increasing E[λ2(L)], which is dif cult to compute. Eqn.(33)
suggests that, for E[λ2(L)] to be large, λ2(L) (much easier
to compute) must be large. In this section we do simulation
studies which show that larger λ2(L) in fact leads to higher
Sc. Fig. 1 (on the top) shows a plot of Sc and E[λ2(L)].
In Fig. 1 (on the bottom), we study the relationship between
Sc and λ2(L). We xed the number of sensors at N = 500
and generated 200 different edge-set probability distributions,
P , to get the plots. For each P , the computation of λ2(L)
was very easy (see eqn.(21)). However to compute E[λ2(L)]
for each P , we generated 450 random L’s, evaluated λ2(L)
from each of them and then averaged to get the result (which
required the generation of about 200 × 450 random matrices.)
As suggested in the last section, the convergence speed Sc

increases with λ2(L). This relation between Sc and λ2(L)
is indeed very signi cant, as computation of λ2(L) for arbi-
trary network distributions is very easy, whereas computing
E[λ2(L)] involves costly numerical simulations in general.

VII. CONCLUSION
In this paper, we study the problem of distributed average

consensus in sensor networks with unreliable communication
links, which we model as random networks with some proba-
bility distribution. We show that, in order to guarantee mean-
square convergence, the network need not be connected with
probability 1; connectivity on average is enough. We formalize
these results, rst by establishing a suf cient condition for
mean-square convergence in terms of the quantity E[ρ(W −
1
N J)]. But evaluating E[ρ(W − 1

N J)] involves computing a
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Fig. 1. Top: Figure showing the relation between Sc and E[λ2(L)]. Bottom:
Figure showing the relation between Sc and λ2(L).

moment of the spectral norm of a random matrix, and since
E[ρ(W − 1

N J)] is a function of α, we have to repeat the
computation for different values of α to check for mean-
square convergence. On the other hand, theorem 3 establishes
a suf cient condition in terms of λ2(L), which is much easier
to compute as shown in Section VI. Finally, we derive bounds
for the convergence rate of the distributed consensus algorithm
and show that larger values of E[λ2(L)] or λ2(L) lead to better
convergence rates.
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