
ROBUST DISTRIBUTED DETECTIONWITH LIMITED RANGE SENSORS

Erhan Baki Ermis, Venkatesh Saligrama

Boston University

ABSTRACT
We consider a multi-target detection problem over a sensor
network (SNET) with limited range sensors and communica-
tion constraints, which complements the decentralized detec-
tion problem where all sensors observe the same target. We
consider sensing models where the signal power from targets
undergoes a power-law decay. The task is to determine the lo-
cations of the targets while minimizing false alarms and com-
munication between sensors. We extend the well-known FDR
framework to solve the multi-target detection problem.

Index Terms— Distributed detection, Non-ideal models,
Robustness, DTFDR, Multi-object detection

1. INTRODUCTION
Sensor networks (SNET) hold great promise for surveillance
and monitoring applications. A wide interest in distributed
detection, estimation, and classi cation in SNETs has emerged
in the recent years [1, 2, 3, 4]. A very interesting setup for
SNETs is the multi-target detection (MTD) problem with sen-
sors having limited sensing range. In this problem there are an
unknown number of targets scattered on a SNET, where the
sensors have limited sensing range. For sensor j,H1j is pres-
ence of at least one target within its sensing range and H0j is
the absence of any. For MTD problems we de ne the global
false alarm event as the event that at least one sensor com-
mits a local false alarm. The general focus is to minimize the
misses while suffering minimal false alarms and communica-
tion cost, both of which drain the SNET’s limited resources.
This problem complements the widely considered decen-

tralized detection problem where all sensors observe the same
target and communicate their local observations to the fusion
center. While the necessity for collaboration is clear in the
latter problem, the bene ts of collaboration for sensors with
limited sensing range has not been widely explored. In our
previous work [5] we showed that collaboration among sen-
sors can be not only bene cial, but also necessary, even with
uncorrelated information at the sensors.
Problems involving multiple targets and multiple sensors

have an inherent dif culty that prohibits use of global false
alarm probability as a performance measure. We refer to this
issue as the multiplicity of false alarms and explain below.
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Multiplicity Issue: Suppose m = 104 sensors scattered on a
eld. We desire a global false alarm probability, PG

F ≤ 0.2.
Suppose local false alarm probability, PL

F is bounded at 0.2
at each sensor. Then as many as 20% of the sensors are ex-
pected to commit false alarms with high probability. This im-
plies that PG

F will be close to one since with high probability
at least one sensor will commit a false alarm. Therefore, to
reduce PG

F , PL
F has to be bounded at much smaller levels,

which in turn reduces detection power greatly.
Using global (network-wise) probability of false alarm as

the performance measure leads to diminishing detection rates
as the number of sensors increase. Using local (sensor-wise)
probability of false alarm without global concerns makes it
impossible to control the false alarms in the SNET level, wast-
ing network resources. Furthermore, the global false alarm
probability and the global miss probability cannot both be
less than the local conditional entropy, which can be arbi-
trarily close to 1/2. For all reasonable setups the local con-
ditional entropy can be high, and the number of errors scale
with the number of sensors. This makes using probability of
false alarm and probability of miss together as performance
measures futile [8]. In view of these issues we previously
focused on a novel statistical idea called the false discovery
rate (FDR) [9] and communication cost constraints as perfor-
mance measures. We developed the DTFDRmethodology for
distributed MTD [6, 7, 8], and showed optimality and scaling
properties.
A major assumption in the development of those method-

ologies was having ideal sensing models (ISM). In the ISM,
sensors without a target in their sensing range observe only
noise, and sensors with a target in their sensing range observe
the signal from that target. Given noise and signal statistics,
this setup renders the exact observation models available for
all sensors under both H0 and H1.
In this work we focus on distributed MTD problems with

non-ideal sensing models (NISM). NISM captures a more
realistic sensing scenario, in which the the sensors observe
target signals attenuated by distance. Therefore, even with
known signal statistics at the source and noise statistics at
the sensors, the observation models at the sensors cannot be
known. For example, the sensors without a target in their
sensing range observe noise, distorted by the attenuated signal
from far away targets. However the amount distortion is un-
certain and can be different for each sensor. Therefore, even if
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the noise statistics are known, it is impossible to form an ex-
act observation model under H0. A similar scenario is valid
for sensors with a target in their sensing range as well. Thus
the observation models under bothH0 and H1 are uncertain.

2. SETUP AND PROBLEM FORMULATION
Consider a non-Bayesian setting where an unknown number
of targets are distributed on a sensor eld of m sensors. Tar-
gets are observed by a SNET in which the sensor nodes are
uniformly distributed. Assume that the noise statistics of sen-
sors and signal statistics of sources are known. We wish to
identify the set of sensors that have an object in their limited
sensing range. We consider ISM and NISM:
Ideal SensingModel: Each sensor can observe targets only in
its sensing range. This model is valid when each sensor has a
limited sensing range and the targets are sparsely distributed.
Given noise statistics for ns and νs, and signal statistics at the
source for θ, the observation model at sensor s are:

H0s : Ys = ns

H1s : Ys = θ + νs

Furthermore, observations are independent under H0 across
sensors, i.e. f{Ys = ys | Yv = yv, H0s} = f0s(y), ∀ v �= s.
Non-Ideal Sensing Model: Each sensor observes a signal
from each target, and the signal decays as a function of dis-
tance. Sensors without a target in their sensing range observe
the sum of the decayed signals from far away targets. For
simplicity of exposition here we only describe the uncertainty
in H0. See [8] for further details. This model can be viewed
as a perturbation of the ISM:

H0s : Xs = θs + ns, where θs =
∑k

j=1
θ

d(s,tj)

H1s : Xs = θ + νs

where t1 . . . tk are targets and d(·, ·) is a distance function.
The uncertainty arises from the unknown θs, because both k
and d(s, tj) are unknown. We use this model for the simula-
tions in Section 3.
Below are the variables associated with MTD problem:

DeclaredH0 DeclaredH1 Total
True H0 U V m0

True H1 T S m−m0

Total m−R R m

FDR and Problem Formulation: FDR is the expected ratio
of the number of false alarms to the total number of observa-
tions that are declared signi cant. In terms of the elements of
the above table, FDR = E(V/R).
We now formulate the problem with FDR as a perfor-

mance constraint. We also add a communication constraint
to limit the inter-sensor information exchange. This formula-
tion is valid irrespective of which model is being used:

minimize E(T ) subject to:
E(V/R) ≤ γ and

∑
s,t C(us(t)) ≤ α

where, C(us(t)) is the communication cost for sensor s at
time t. See [8] for details.

2.1. Solution for the Ideal Sensing Model
Controlling the FDR: The FDR algorithm, introduced in [9],
takes the value γ as an input, and in return guarantees a false
discovery rate below this input. The FDR procedure is de-
scribed below and presented in Fig. 1:
1. Calculate the p values for all the observations
2. Order the p values in ascending order
3. Find the largest index, imax, such that pi ≤ i

mγ

4. Declare pj signi cant for 0 ≤ j ≤ imax

The p value is de ned as P (X) =
∫∞

X
f0(t)dt = 1− F0(X)

where f0 is the pdf of observations under H0. The p value of
the random variableX0, whereX0 comes fromH0, is de ned
P0, and similarly for P1.

(a) De nition of p value (b) Ordered p values and threshold
line

Fig. 1. FDR algorithm
Although it is a very powerful approach, FDR procedure

suffers from two signi cant drawbacks that make it unsuitable
in our applications: First, if the realizations P1 are not clus-
tered around zero, the detection power is very low. Second,
the FDR strategy does not lend itself easily to decentralized
implementation when F1 is not concave. Next we present
methods to overcome these issues under ISM.
Domain Transformation (T ): De ne the following tuple, for
any measure μ, function φ, and uniform measure U :

(αμ(y), βμ(y)) = (EU [I{φ(x)≥y}(x)], Eμ[I{φ(x)≥y}(x)])
De ne the new measure: μ̂(0, αμ(y)) = βμ(y). If αμ(y) has
a jump at y = y0 from a to b, then set

μ̂(0, z) = βμ(y−0 )−βμ(y+
0 )

b−a (z − a) + βμ(y+
0 ) for z ∈ (a, b)

which is a conditionally uniform distribution in (a,b).
Now let g1(·) be the pdf of P1. De ne T as follows:
1. Let ymax = maxx{g1(x)}
2. De ne (αμ(y), βμ(y)) by setting φ(·) = g1(·) for y ∈

(0, ymax) and μ(B) =
∫

B
g1(x)dx ∀B ∈ (0, 1)

3. Construct μ̂(0, αμ(y)) = βμ(y) ∀y ∈ (0, ymax)
4. Let ĝ1(·) be the corresponding density of μ̂. Generate

P̂ = T [P ] as follows:
(a) For P ∈ (0, 1) nd Y = g1(P )
(b) Find S = {x : ĝ1(x) = Y } and draw P̂ ∼ U(S)

Fig. 2 illustrates the nature of transformation.
The following procedure is referred to as the Domain Trans-

formed FDR (DTFDR) procedure. An ef cient distributed
DTFDR algorithm can be found in [8]:
1) Apply T to P0 and P1, 2) Follow the FDR procedure.
Fig. 3 shows ROC-like curves for FDR and DTFDR. The

DTFDR is uniformly stronger.
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Fig. 2. T generates a monotonically decreasing pdf.

(a) Original and transformed pdf of
P1 (not normalized)

(b) Detection rate vs γ

Fig. 3. ROC-like curves for FDR and DTFDR procedures.

2.2. Extension to the Non-Ideal Sensing Model
In [8] we have shown the optimality and scaling results of
the DTFDR procedure, and we have established that the dis-
tributed algorithm is robust with respect to observation noise.
Note that this robustness is not with respect to the perturba-
tion of the observation model. We now present the robustness
of T with respect to perturbation of the observation model.
Here we state the theorems, the proofs can be found in [8].
There are two parts of the robustness property: The rst

part establishes that the miss rate of the DTFDR increases
gracefully with the perturbation of the ISM.
The second part establishes that a family of distributions

that are close in terms of a total variation metric remain close
upon application of T . Combining this with the rst part of
the robustness property allows us to address the distributed
MTD problem with NISMwithin the framework that has been
described in this paper. See [8] for more details.
Before we proceed to presenting the results, we formally

de ne the false non-discovery rate (FNR) [10], the natural
counterpart of FDR. In terms of the variables presented in
the table, FNR = E(T/(m − R)). Let F be the concave
distribution of observations under H1 such that F ′(0) > β
where β = ( 1

γ − m0
m )/(m1

m ). Let θ0 = m0
m and θ1 = m1

m .
In [10] it is shown that if c is the solution to F (x) = βx,
asymptotically the following holds true:

FNR =
θ1(1− F (c))

θ1(1− F (c)) + θ0(1− c)

The following theorem establishes the rst part:

Theorem 2.1 Let FN be the concave nominal distribution of
observations under positive hypotheses such that F ′N (0) > β
and FA be the actual distribution of observations under posi-
tive hypotheses such that F ′A(0) > β. Let c be the solution to

F (x) = βx and u the solution to F (x)−ε = βx. If |FN (x)−
FA(x)| ≤ ε(x), then for ξ = (FN (c)− FN (u))/(c− u),

FNRactual ≤ FNRnominal +
1

(1− γ)2
ε

[1− F ′N (ξ)/β]

where ε = supx{ε(x)}.
This theorem establishes that a small perturbation on the

concavity of the nominal distribution under H1 does not lead
to a signi cant loss of performance in terms of the FNR. In
fact, the loss of performance is directly proportional with the
upper bound on the perturbation.
The following theorem presents the effect of T on the to-

tal variation distance:

Theorem 2.2 Let μN =
∫

g1N be the measure with respect
to the nominal distribution of observations under H1, and
de ne μA in a similar fashion for the actual distribution of
observations. If dtv{μN , μA} ≤ ε then supx |Ĝ1N (x) −
Ĝ1A(x)| ≤ ε where Ĝ1N (·) and Ĝ1A(·) are the distribution
functions obtained by T .
Theorem 2.2 has the following implication: If the nominal

and the actual distribution of observations are ε away from
each other in terms of total variation distance, then T will
lead to distributions that are at most ε away from each other
in terms of Kolmogorov distance.
Connecting this with Theorem 2.1 implies that as long as

the family of distributions that are considered under the NISM
is such that the total variation distance is small, the distributed
detection problem can be addressed within the DTFDR frame-
work. The result can be extended to Prokhorov distance, and
is presented in [8]. This extension allows us to consider sin-
gular distributions as well as continuous ones forH1.

3. SIMULATIONS
Below we present a detection simulation in which we com-
pare FDR and DTFDR procedures with NISM. The sensor
eld is a grid of size 100x100, where each pixel is assumed
to have a sensor. Let the set of targets be T = {t1, t2, . . . , tk}
with uniform signal power θ. De ne d(s, t) be the Euclidian
distance between sensor s and target t. We assume that the
target signal is θ within the effective region of the target, and
decays rapidly with distance outside this region. H0 for a sen-
sor is that it is outside the effective region of all targets, and
H1 is that it is inside the effective region of at least one target.
Then, with ns and νs being noise at sensor s for H0 and H1

respectively, the observation model at sensor s for the NISM
is as follows:

H0 : Xs = θs + ns, where θs =
∑k

j=1
θ

d(s,tj)

H1 : Xs = θ + νs

The parameters are: γ = .2, θ = 2.5, the effective radius
of the target reff = 2.5 pixels. ns ∼ N(0, 1) and νs ∼
N(0, 0.05). There are 10 targets on the eld. The commu-
nication constraint α is varied and the results are presented
for illustrative cases in Fig. 4. For α ≤ 140, the FDR pro-
cedure is unable to detect the signi cant sensors, whereas the
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DTFDR procedure is able to do so. As the communication
constraint is loosened, the performance of DTFDR procedure
increases proportionally, yet keeping the false alarms at low
levels. Although the FDR procedure also detects some signif-
icant sensors, the FDR algorithm returns more false alarms.
Finally, observe that the FDR procedure has more misses than
the DTFDR procedure. This was the expected result through-
out the development and analysis.

(a) Ordered P values

(b) Target Locations (c) Target Locations

(d) Detection with FDR (e) Detection with FDR

(f) Detection with DTFDR (g) Detection with DTFDR

Fig. 4. Detection performance of FDR and DTFDR for α =
140 bits (b,d,f), α = 280 bits (c,e,g).

4. CONCLUSION
In this paper we considered distributed multi-target detec-
tion problem in sensor networks. We introduced non-ideal
sensing models to the problem and pointed out the important
differences between ideal and non-ideal sensing models. In

ideal sensing models the observation models are known ex-
actly whereas in the non-ideal sensing model the observation
models are only partially available. We extended the DTFDR
procedure, which was developed to solve the distributed de-
tection problem under ideal sensing assumptions to address
the problem under non-ideal sensing assumptions. This in-
volved establishing the robustness of the DTFDR procedure
with respect to model uncertainties. The results prove to be
very important as the extensions to NISM connect the theo-
retical framework we had developed with real life problems
in which complete model information may not be available.
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