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ABSTRACT

We consider the problem of storing data from multiple correlated
sources in a database, so as to enable ef cient future retrieval of
data from select subsets of the sources, where only statistical in-
formation about queries may be available in advance. This setting
poses new challenges in terms of the precise tradeoffs between stor-
age rate, retrieval rate and distortion. We derive a gradient descent
algorithm to optimize the joint encoding (storage) procedure, the de-
coder, and the retrieval procedure via mapping from queries to sub-
sets of the stored data to retrieve and decode, so that the average re-
trieval rate-distortion cost is minimized, given a pre-speci ed overall
storage capacity (or rate). Experiments conducted on real and syn-
thetic data-sets demonstrate that our selective retrieval procedure is
able to achieve signi cantly better trade-offs than joint compression,
with retrieval speed-ups reaching 5X and distortion gains of up to
3.5dB possible.

Index Terms— Multisensor systems, Vector quantization, Data
compression, Database query processing

1. INTRODUCTION

We are motivated by the problem of data storage for sensor net-
works. As an illustrative example, suppose we consider a network of
surveillance cameras covering a scene. The video signals generated
by these cameras are expected to be highly correlated, since they are
covering the same scene. This data is sent to a fusion center to be
stored for possible future analysis. In a slightly more generalized set-
ting, we could possibly have multiple storage centers each of which
store video data from one or more cameras i.e. distributed storage
but for the sake of simplicity, we assume that all video signals are
stored in a single fusion center.

When the data from the fusion center is eventually accessed by
a user, it is very likely that the views from only a small subset, and
not all, of the cameras will be requested at any given time. An inter-
esting tradeoff emerges between con icting objectives: On the one
hand, the inter-sensor correlation may be exploited via joint cod-
ing to minimize the overall storage requirement and to minimize the
retrieval bit rate (and hence time) required for retrieving highly cor-
related data. On the other hand, the speci c nature of the query may
result in selecting only very few of the sources to be reconstructed,
and it would be wasteful to have to retrieve the entire compressed
data only to reconstruct a small subset. Figure 1 is representative of
the issues at hand.

The work is supported in part by the NSF under grant IIS-0329267, the
University of California MICRO program, Applied Signal Technology, Inc.,
Dolby Laboratories Inc., and Qualcomm Inc.
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Fig. 1. Fusion Storage vs. Selective Retrieval

The high level of correlation between signals generated by sen-
sors in a network has been exploited to minimize the requirements
on the communication link from sensors to the fusion center (or col-
lector node) [1]. But to the best of our knowledge, no work exists
to model, let alone solve, the constrained optimization problem of
ef cient storage and fast retrieval of data generated by sensor net-
works. We would like to emphasize here that while we are motivated
by sensor networks, the problem generalizes to the storage of all col-
lections of correlated sources/time-series. We have recently pointed
to the underlying theoretical problem in [2], where we also provided
information-theoretic (asymptotic) analysis to determine an achiev-
able rate region for lossless storage and reconstruction. In subse-
quent sections, we rst show the non-trivial nature of the problem
(section 2), then describe our solution framework (section 3) and the
design algorithm (section 4), (that optimizes the tradeoff between
storage capacity, distortion, and retrieval speed) and nally, report
experimental results (section 5).

2. INFORMATION THEORETIC MOTIVATION

Let us denote the M correlated sources as the set, {Xm, m = 1...M}.
We de ne a query as the subset of sources that need to be retrieved.
Employing binary variables qi ∈ {0, 1} to denote whether source Xi

is requested or not, we represent queries by M -tuples of the form

q = (q1, ..., qM ) ∈ Q (1)

where Q ⊆ {0, 1}M represents the domain-set of queries. We next
introduce notation for the query distribution, or the probability mass
function (pmf),

P : Q → [0, 1] (2)

It is to be noted that there are conceivably 2M possible queries and�
q∈Q P (q) = 1. Without loss of generality, we assume that each

source is requested with positive probability (i.e., there exists some
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query with positive probability whose requested subset includes the
source) and that a query always asks for a non-empty subset of
sources, i.e.,

P (0) = 0 (3)
It is to be noted that in our notation, boldface letters in lowercase and
upper case represent vectors and random vectors, respectively.

Given a database of constant size, the retrieval time or the time
required to retrieve a subset of sources is proportional to the number
of bits retrieved per sample, which we term the retrieval rate. Let
the number of bits pulled out to answer query q be Rq. Then, the
average retrieval rate is

Rr =
�

q∈Q
P (q)Rq (4)

Since retrieval speed is inversely proportional to retrieval time, our
goal of maximizing the retrieval speed is trivially equivalent to min-
imizing the retrieval rate.

2.1. Lossless Storage and Retrieval

To compress any source of information X , the number of bits re-
quired for lossless representation should be at least the Shannon en-
tropy (entropy-rate, for sources with memory and differential en-
tropy, for continuous alphabets) of the source, H(X).

2.1.1. Minimal Storage Rate

It follows from Shannon’s basic result that the minimum number
of bits required to store M sources X1, . . . , XM , i.e. the minimal
storage rate is

Rs,min = H(X1, ..., XM ) (5)
Since H(X1, ..., XM ) ≤ �m H(Xm) joint compression of cor-
related sources always requires less bits for storage than separate
compression (by exploiting inter-source redundancies). It is also to
be noted that the retrieval rate for this method is

Rr = H(X1, ..., XM ) (6)

since the entire compressed description needs to be retrieved for any
query.

2.1.2. Minimal Retrieval Rate

If we denote the set of sources queried as,

X(q) = {Xm, ∀m : qm = 1}
the minimum number of bits required to reconstruct the sources re-
quested in query q is H(X(q)) and hence, the minimum average
retrieval rate possible for any query distribution is

Rr,min =
�

q

P (q)H(X(q)) ≤ H(X1, ..., XM )

This implies that joint compression is not optimal in retrieval speed,
and in order to have the fastest retrieval speed, we need to compress
and store each subset of sources that may be requested, separately.
However, unless M is very small or the set of queries Q is severely
restricted, the storage requirement would be impractically high as it
would have to individually accommodate a very large (possibly an
exponential) number of queries, i.e.

Rs =
�

q∈Q
H(X(q)) >> H(X1, ..., XM ) = Rs,min (7)

|S(Q)|
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Fig. 2. Proposed System Block Diagram

Thus, it is clear that the optimum storage technique is wasteful in
retrieval speed and the optimal retrieval technique is wasteful in stor-
age.

3. LAGRANGIAN COST FORMULATION

Any practical storage scheme would need to quantize and compress
the data before storage, hence leading to some error or distortion.
The reconstruction distortion is measured as

dq(x, x̂) =

M�

m=1

qmdm(xm, x̂m), (8)

where
dm : R×R → [0,∞). (9)

Hereafter, we will specialize to the squared error distortionmeasure,
i.e. distortion measure of the form

dm(x, x̂) = (x − x̂)2, m = 1, ..., M (10)

A block diagram, representative of our system model, is given in
gure 2. We de ne the encoder as the function

E : RM → I = {0, 1}Rs (11)

which compresses the M-dimensional input vector x, representing
the M sources, to Rs bits at each instant.

The bit subset selector is the mapping

S : Q → B = 2{1,...,Rs} (12)

where Q ⊆ {0, 1}M represents the domain-set of queries and B is
power set (set of all subsets) of the set {1, ..., Rs}. This mapping
determines which of the stored bits to retrieve for a given query q. It
is to be noted that S(q) ⊆ {1, . . . , Rs}, ∀q.

For each subset of bits e that can be retrieved, an estimate of all
the sources is formed by the decoder

D : I × B → X̂ (13)

where X̂ ⊂ RM is the corresponding codebook. The average dis-
tortion for a speci c query q is

Dq = E[dq(X,D(E(X),S(q)))] (14)

where E[. . .] denotes statistical expectation, and the distortion aver-
aged across all queries is D =

�
q∈Q P (q)Dq. In practice, since we

have access to the database X itself, we use it as a training set and re-
place the expectation operator E[. . .] by a simple average, evaluated
across the database X . Hence, the distortion is evaluated as

D =
�

q∈Q
P (q) 1

|X |
�

x∈X
dq(x, x̂), (15)
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Noting that S(q) denotes the subset of bits drawn to reconstruct
query q and Rq = RS(q) = |S(q)|, the average retrieval rate is,

Rr =
�

q

P (q)Rq =
�

q

P (q)|S(q)| (16)

Given M correlated sources, a storage constraint Rs and a dis-
tortion constraint D, we aim to design storage systems that

min
E,S,D

J = Rr(Rs, D) (17)

Reformulating the problem in terms of Lagrange multipliers, the ob-
jective is to

min
E,S,D

J = D(Rs) + λRr(Rs), λ ≥ 0 (18)

4. NECESSARY CONDITIONS FOR OPTIMALITY

The Lagrangian cost J can be rewritten as

J =
1

|X |
�

x

�

q

P (q)dq(x,D(E(x),S(q)))

+λ
�

q

P (q)|S(q)| (19)

Optimal Encoder : From the above equation, the optimal encoding
index E(x) for input vector x is

E(x) = arg min
i∈I

�

q

P (q)dq(x,D(i,S(q))), ∀x

Optimal Bit-subset Selector : Similarly, the best set of bits to be
pulled out for a particular query should be the one that minimizes the
Lagrangian sum of the distortion measure dq(., .), averaged across
the training set, and the query-speci c retrieval rate Rq = |S(q)|
i.e.

S(q) = arg min
e∈B

{ 1

|X |
�

x

dq(x,D(E(x), e)) + λ|e|}, ∀q

Optimal Decoder : We use ie, to denote the sub-index extracted
from i by retrieving the bits in the positions indicated by e and
D(i, e) to denote the corresponding codevector. By setting to zero,
the partial derivatives of J w.r.t D(i, e)∀e ∈ B, we nd the optimal
decoder to be

D(i, e) =
1

|F |
�

x∈F

x, ∀e, i

where F = {x : (E(x))e = (i)e}.
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Fig. 3. STOCKS: Correlation histogram
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Fig. 4. EXP: Exponential Query Distribution with M = 93 sources

4.1. Algorithm for Lagrangian Cost Optimization

A natural algorithm is to iteratively enforce each of the necessary
conditions for optimality (derived in the preceding sections), till a
convergence condition is satis ed. In effect, the algorithm just par-
titions the elements of the training set and the storage bits into dif-
ferent groups, and for a nite sized training set and a nite stor-
age rate, there exist only a nite number of set partitions. At each
step of the optimization, a set of parameters are chosen to minimize
the Lagrangian cost and hence, with every iteration, the cost is non-
increasing. Therefore, the algorithm is guaranteed to converge in
a nite number of iterations. It is to be noted that the Lagrangian
cost surface is non-convex and has multiple local optima. Hence, a
globally optimal solution is not guaranteed.

5. SIMULATION RESULTS

5.1. DATA-SETS

We tested our algorithm extensively on both synthetic and real data-
sets, where we evaluated the operational (retrieval) rate (Rr) vs.
distortion D curves for different settings of storage complexity. A
brief description of our data-sets follows.

5.1.1. SYNTH: Synthetic data

For the synthetic data-set SYNTH, the sensor sources were modelled
as correlated Gaussian sources (of unit variance i.e. σ2 = 1), with
the correlation between sources modelled as falling exponentially
with distance. Speci cally, if ρij represents the correlation between
sources Xi and Xj ,

ρij = ρ|i−j| (20)

where −1 ≤ ρ ≤ 1. This correlation model can be expected when
spatio-temporal sensor elds are uniformly sampled [3]. We tested
the system for ρ = 0.3 and ρ = 0.8, corresponding to low and
high correlation data-sets , with M = 93 sources, each having 3000
samples.

5.1.2. STOCKS: Real Data

The real data-set that was used was the STOCKS data-set, available
in the University of California, Riverside (UCR) Time-Series Data
Mining Archive and consists of M = 93 stocks, each having 3000
samples. It is highly correlated, as can be seen from the histogram
of the pairwise correlation coef cient ρ (Figure 3).
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5.2. Query Model

In this section, we describe ”exponential queries” (”EXP”), which
we believe model real-user behavior. Even though in theory, there
are 2M − 1 possible queries, typically, only a smaller number of
sources (say n) are going to be requested at any time. There are (M

n )
ways of selecting n out of M objects and for moderate values of M ,
even this might be very large. For example, if M = 30 and n = 4,
230 − 1 
 109and (304 ) = 27405. Intuitively, we believe that the
typical user would not consider all such combinations. In our sample
distribution, on an average, out of the 93 sources/time-series, 10 are
requested and it is representative of 335 queries, that were randomly
generated. Even though the queries were chosen randomly, we en-
sured that each source is requested by at least one query. Figure 4 is
representative of this query distribution. It is to be noted that the plot
is with respect to the size of the query |Q|. It is also to be noted that
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Fig. 6. Selective Retrieval vs. Joint Compression: SYNTH, ρ = 0.8

even a query set of size 335 cannot be handled with the naive stor-
age technique presented in 2.1.2, i.e. compressing and storing every
subset of sources separately, without paying an enormous price in
total storage.

5.3. Performance Comparison

We compared the performance of joint compression and selective
bit-retrieval for both the synthetic and real data-sets (see Figures 5,
6 and 7). The joint compression of the data set was performed by
a Vector Quantizer (VQ) designed with the well known Generalized
Lloyd Algorithm (GLA) [4]. The performance of proposed selective

bit-retrieval technique was evaluated at two storage rates, Rs = 4
and Rs = 6 bits per sample. For the synthetic data-set with ρ = 0.3
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Fig. 7. Selective Retrieval vs. Joint Compression: STOCKS

(Figure 5), the selective bit-retrieval technique is able to provide a
speed-up of nearly 5X at a distortion level of 9.35dB. For the syn-
thetic data-set with ρ = 0.8 (Figure 6), there is a 4X speed-up over
the joint compression technique, with average distortion of 8.5dB.
Additionally, there is also a distortion gain of nearly 1dB at a re-
trieval rate of 1 bit per sample. In the real data-set (Figure 7), the
selective retrieval technique provides a ≈1.6X speed-up with distor-
tion 28dB and nearly 3.5dB less distortion at an average retrieval
rate of 3 bits. We also note that increasing the storage rate generally
results in better performance of the selective retrieval technique, ex-
cept in the real data-set. This is because the design algorithm gets
trapped in one the many local minima that riddle the cost surface.

6. CONCLUSIONS

We introduced the problem of fusion storage with selective retrieval
for sensor/time-series databases. We posed the design problem as the
minimization of a Lagrangian functional with an appropriate choice
of an encoder, encoded bit-selector and decoder. We evaluated the
necessary conditions for optimal solutions and proposed an algo-
rithm that is guaranteed to converge to a locally optimal solution.
We observed that the proposed algorithm is able to provide signi -
cant improvement in retrieval speed, for a given distortion level and
signi cantly better data reproduction quality, for a given retrieval
speed, over naive joint vector quantization, on both real and syn-
thetic data-sets.
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