
 

MINIMAL ENERGY DECENTRALIZED ESTIMATION BASED ON  
SENSOR NOISE VARIANCE STATISTICS 

 
Jwo-Yuh Wu, Qian-Zhi Huang, and Ta-Sung Lee 

Department of Communication Engineering, National Chiao Tung University, 
1001, Ta-Hsueh Road, Hsinchu, Taiwan 

Tel: 886-35-712121, ext. 54549; Fax: 886-35-710116 
Emails: jywu@cc.nctu.edu.tw; qianzhi.yux@gmail.com; tslee@mail.nctu.edu.tw.  

 
Abstract- This paper studies minimal-energy decentralized 

estimation in sensor networks under best-linear-unbiased-estimator 
fusion rule. While most of the existing related works require the 
knowledge of instantaneous noise variances for energy allocation, the 
proposed approach instead relies on an associated statistical model. 
The minimization of total energy is subject to certain performance 
constraint in terms of mean square error (MSE) averaged over the 
noise variance distribution. A closed-form formula for the overall MSE 
metric is derived, based on which the problem can be reformulated in 
the form of convex optimization and is shown to yield an analytic 
solution. The proposed method shares several attractive features of the 
existing designs via instantaneous noise variances; through simulations 
it is seen to significantly improve the energy efficiency against the 
uniform allocation scheme. 

 
Index Terms: Decentralized estimation; Sensor networks; Energy 

Minimization; Convex optimization; Quantization. 
 

I. INTRODUCTION 
 
  Decentralized estimation has become an important topic in signal 
processing research for sensor networks [9], [10]. Subject to severe 
energy and bandwidth limitations, each sensor in this scenario is 
allowed to transmit only a quantized version of its raw 
measurement to the fusion center (FC) to generate a final 
parameter estimate. While quantized messages with longer bit 
length provide improved data fidelity, the consumed transmission 
energy is however proportional to the bit loads [3], [8]. As energy 
efficiency is a critical concern for sensor network design [9], [10], 
the minimal-energy decentralized estimation problem, formulated 
in an optimal bit-loading setup, has been recently considered in [3], 
[6], [8]. One key feature common to these works is that the energy 
(or bits) allocated to each sensor must be determined via 
instantaneous local sensor noise characteristics, e.g., the noise 
variance, if the fusion rule follows the best-linear-unbiased- 
estimator (BLUE) principle [1]. To improve the estimation 
performance against the variation of sensing conditions, repeated 
update of the noise profile would be needed: this comes inevitably 
at the cost of more training overhead and thus extra energy 
consumption. One typical approach to resolving such a drawback 
is to exploit the partial (or long-term) information of the noise 
characteristics [8]; the related solutions, however, remain yet to be 
developed. 
 
  This paper attempts to provide a solution to minimal-energy 
decentralized estimation (under BLUE fusion rule) by exploiting 
long-term noise variance information. We focus on a commonly 
used statistical model for noise variance, and the estimation 

performance is assessed through an MSE based metric averaged 
with respect to the considered distribution. A closed-form 
expression of the overall MSE requirement is derived, and it is 
seen to be highly nonlinear in the sensor bit loads. Through 
analysis the energy-minimization problem is reformulated in the 
form of convex optimization and is then analytically solved. The 
proposed optimal scheme shares several interesting aspects 
pertaining to those based on the instantaneous noise variance 
information: sensors with bad channel quality (specified via the 
path distance to FC) are shut off to conserve energy, and for those 
active nodes the allocated energy is proportional to the individual 
channel gain. Simulation results show that the proposed optimal 
solution yields significant energy saving against the equal-bit 
allocation policy. 
 

II. PRELIMINARY 
 

Consider a wireless sensor network, in which N spatially 
deployed sensors cooperate with a FC for estimating an unknown 
deterministic parameter . The local observation at the ith node is 
 :i ix n= + , 1 i N ,  (2.1) 

where in  is a zero-mean measurement noise with variance 2
i . 

Due to bandwidth and power limitations each sensor quantizes its 
observation into a ib -bit message, and then transmits this locally 
processed data to the FC to generate a final estimate of . In this 
paper the uniform quantization scheme with nearest-rounding [4] 
is adopted; the quantized message at the ith sensor can thus be 
modeled as 
 :i i im x q= + , 1 i N ,  (2.2) 
where iq  is the quantization error which is uniformly distributed 

with zero mean and variance 2 2 /(12 4 )i
i

b
q R=  [4], where 

[ /2, /2]R R  is the available signal amplitude range common to 
all sensors. With (2.1) and (2.2), the received data from all sensor 
outputs can be expressed in a vector form asa 

 

 

a. We assume perfect reception of all the messages im ’ at the FC, and the 
resultant MSE thus serves as a yardstick performance. When the 
transmission link is modeled as a binary symmetric channel, by following 
the procedures as in [8] the incurred MSE can be shown to be at most a 
constant factor away from the benchmark measure, provided that the bit-
error-rate is below certain threshold. 
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where ()T  denotes the transpose. This paper focuses on linear 
fusion rules for parameter recovery. More specifically, by 
assuming that the noise components ,{ }n q  in (2.3) are mutually 
independent with covariance matrices nC  and qC , the parameter 

 is retrieved via the BLUE [1] estimator via 

 
1

1
ˆ :

T

T= 1 C m
1 C 1

, where := +n qC C C .       (2.4) 

We further assume that the measurement noise in ’s are i.i.d., and 
the quantization noise iq ’s are independent across all sensors; as 

such the MSE incurred by ˆ  can be immediately computed as [1] 

( )
1

2 11
2 2

1

1ˆ
4 /12i

N
T

b
i i

E
R=

= =
+

1 C 1 .   (2.5) 

A commonly used statistical description for sensor noise variance 
is [3], [8]: 
 2

i iz= + , 1 i N ,  (2.6) 
where  models the network-wide noise variance threshold,  
controls the underlying variation from the nominal minimum, and 

2
1iz  is a central Chi-Square distributed random variable with 

degrees-of-freedom equal to one [2, p-24]. In the sequel we will 
exploit the noise variance model (2.6) for minimal-energy 
decentralized estimation. 
 

III. MAIN RESULTS 
 
A. Problem Formulation 
 
  We assume as in [3] that the consumed energy for transmitting 
the message im  at the ith sensor is proportional to the number of 
bits ib  in im , that is, 
 i i iE w b=  for some iw , 1 i N ;  (3.1) 
 
the energy density factor iw  is defined as [3] 

 (2 1) 4(1 2 ): ln
s s

i i
b

w d
s sP

= ,  (3.2) 

in which  is a constant depending on the noise profile, id  is the 

distance between the ith node and the FC,  is the path loss 

exponent common to all sensor-to-FC links, s is the number of bits 
per QAM/PSK symbol, and bP  is the target bit error rate. With 

(3.1), the specification of the energy allocated to the ith sensor 
thus amounts to determining the number of quantization bits ib . 

For a fixed set of noise variances 2
i ’s, the energy minimization 

problem subject to an allowable parameter distortion level  (in 
terms of MSE) can be formulated as: 

Minimize 
1

N

i i
i
w b

=
, subject to  

      
( )

1

2 2
1

1
/12 4 i

N

b
i i R= +

 and 0ib , 1 i N ,   (3.3) 

or equivalently, 

Minimize 
1

N

i i
i
w b

=
, subject to 

      ( )
1

2 2
1

1
/12 4 i

N

b
i i R= +

 and 0ib , 1 i N .      (3.4) 

To obtain a universal solution irrespective of instantaneous 
measurement noise conditions, we will consider the following 
optimization problem, in which the equivalent MSE performance 
metric in (3.4) is instead averaged with respect to the noise 
variance statistic characterized in (2.6): 
 

Minimize 
1

N

i i
i
w b

=
, subject to 

( )
( ) 1

2
1

1
/12 4 i

N

b
i i

p d
z R= + +z z z , 0ib , 1 i N , 

  (3.5) 
where 1: [ ]TNz z=z  with ( )p z  denoting the associated 
distribution. In (3.5), the constraint that all ib  are nonnegative 
integers are relaxed to be 0ib  so as to render the problem 
tractable; once the optimal (real valued) ib ’s are computed, the 
associated bit loads can be obtained via upper integer rounding, as 
in [3], [8]. The solution to problem (3.5) is discussed next. 
 
B. Proposed Approach 
 
  To solve (3.5), a crucial step is to derive an analytic expression of 
the average MSE performance measure. For this we first note that, 
since 2

1iz  is i.i.d. and [2, p-24] 

 ( )2
1

1( ) exp /2 ( )
2

p z z u z
z

= ,     (3.6) 

where ()u  is the unit-step function, we have 

( )
( )

( )

   2
1

/2 /2

20 0
1 1

1
/12 4

1 1
2 24 /12

:

i

i i

i

N

b
i i

z zN N

i ib
i ii i i ii

i

p d
z R

e edz dz
z z zz R

=

= =

+ +

= =
++ +

=

z z z

          (3.7) 
The following lemma (see [7] for a proof) provides a closed-form 
expression of the integral involved in the summation in (3.7). 
 
Lemma 3.1: With 0>  and 0i >  as defined in (3.7), we have 

( )
( )

 
/2/2

0

2 /iiz i
i

i i i i

e Qe dz
z z

=
+

,  (3.8) 

where 
2 / 2

( ) :
2

t

x

eQ x dt=  is the Gaussian tail function.          

 
  With (3.7) and (3.8), the optimization problem (3.5) can be 
equivalently rewritten as 

Minimize 
1

N

i i
i
w b

=
, subject to 

     
( )/2

1

1

/2 iN i

i i

e Q

=
, 0ib , 1 i N .    (3.9) 
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Exact solutions to problem (3.9) appear intractable since the design 
constraint, in particular, the one accounting for the target MSE, is 
highly nonlinear in ib . We will thus seek for suboptimal 
alternatives which can otherwise admit simple analytic expressions. 
The underlying approach toward this end is to derive an easy-to-
tackle lower bound on the target MSE metric, and then replace the 
MSE constraint in (3.9) by one which forces the lower bound to be 
above 1 : such a procedure will considerably simplify the 
analysis without incurring any loss in the desired MSE 
performance. This is done with the aid of the next lemma (see [7] 
for a proof). 
 
Lemma 3.2: The following inequality holds: 
 

 
( ) ( )

/2

1 1

/2 1 / 2 / 12
i

i
N Ni b

i ii

e Q
cNQ R

N= =
+ , 

where ( ) ( )( ) 1/2 2: 2 /12c e R= + .                              

The above inequality suggests that it suffices to consider the 
following modified constraint without incurring any loss in the 
target MSE: 

 ( ) 1

1

1
/ 2 / 12i

N
b

i
cNQ R

N =
+ ,        (3.10) 

or equivalently, 

 ( ) 1

1

1 1/ 2 / 12i
N

b

i
R Q

N cN=
+         (3.11) 

since ()Q  is one-to-one and monotone decreasing. Based on the 
above discussions, we will instead focus on the optimization 
problem with a modified MSE performance constraint: 

Minimize 
1

N

i i
i
w b

=
, subject to 

  1

1

1
2

12
i

N
b

i

R
Q

N cN=
, 0ib , 1 i N . (3.12) 

 
The main advantage of the proposed formulation is that, in (3.12), 
the cost function is linear and the constraints are convex; it is thus 
a convex optimization problem and will moreover lead to a simple 
closed-form solution as shown below. 
 
C. Optimal Solution 
 
  To solve problem (3.12), let us form the Lagrangian as 
( )1 1

1

1 1 1

, , , , ,

1
2

12
i

N N

N N N
b

i i i i
i i i

L b b

R
w b Q b

N cN= = =
= + +

    (3.13) 

 
the associated set of KKT conditions then reads 
 

 ( ln2) 2 0
12

ib

i i
Rw
N

+ = , 1 i N ,  (3.14) 

 1

1

12 0
12

i
N

b

i

R Q
N cN=

+ = ,   (3.15) 

 0 , 0i , 0i ib = , 0ib , 1 i N .  (3.16) 

The optimal solution can be obtained by solving (3.14)~(3.16), and 
is given by the following theorem (see [7] for detailed derivation). 
 
Theorem 3.3: Assume 1 2 Nw w w  without loss of 
generality, and define the function 

 ( ) 1
1

( ) :
K

K i
i

f K Nw w
=

= , 1 K N .        (3.17) 

Let 11 K N  be such that 1( 1) 1f K <  and 1( ) 1f K . 
Then we have 

 

                   

 

1

2 1

0, 1 1,

log , ,
12

opt opt
i

i

i K

b R K i N
Nw

=            (3.18) 

where ( ) 111 1 1 1

1
/

K
opt

j
j

Q c N w
=

= .         

D. Discussions 
 
1. Since 0 ib < , a necessary condition for validating the 

MSE constraint in (3.12) is therefore 

1 1 0Q
cN

, or 1 Q
cN

    (3.19) 

because ()Q  is one-to-one and monotone decreasing. By 

definition of the constant c and with (3.19), the MSE 
attainable by the proposed method is lower bounded by 

               ( )
1

/2
2

2/
( /12)

Ne Q
R+

.     (3.20) 

2. Recall from (3.2) that the energy density factor iw  is 
proportional to the path loss gain id  (if the same bit error 
rate is assumed throughout all the links). Large values of iw , 
in particular, correspond to sensors deployed far away from 
the FC (with large id ), usually with poor background channel 
gains. In light of this point, the proposed optimal solution 
(3.18) is intuitively attractive: sensors associated with the 
1( 1)K th largest iw ’s are turned off to conserve energy. 

We note that a similar energy conservation strategy via 
shutting off sensors alone poor channel links is also found in 
[8], in which an energy model with exponential dependency 
on ib  is otherwise adopted and a scenario with instantaneous 
noise variances available to the FC is considered. 

3. We further note from (3.18) that, for those active nodes, the 
assigned message length is inversely proportional to iw : this 
is intuitively reasonable since sensors with better link 
conditions should be allocated with more bits (energy) to 
realize the desired network-wide performance. 

4. Based on the inequality constraint for MSE in (3.12), the 
equal-bit scheme maintaining the desired MSE can be 
obtained by obtained as 

 
( )2 1 1 1 1

log
12 /

Rb
Q c N

= .      (3.21) 

Simulation results in the next section show that the proposed 
optimal scheme (3.18) yields significant energy saving when 
compared with (3.21). 
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IV. NUMERICAL SIMULATION 
 

  This section illustrates through numerical simulation the energy 
saving efficiency of the proposed solution (3.18) over the uniform 
allocation scheme (3.21). For a fixed set of energy density factors 
iw , 1 K N , the performance is measured via the percentage 

of energy saving (PES) as defined in [3], [8]. In each trial, we 
simply set i iw d= , where 3.5=  and 10 10i id Z= + , with 

2
1 ( )iZ z  being i.i.d.; the results are averaged over 50,000 

independent trials. The total number of sensors is 1500N = , 
under 0.005= . For minimal noise variance threshold fixed at 

0.8= , Figure 1-(a) shows the PES for 0.1 1.6 , and 

Figure 1-(b) depicts the computed b  in (3.21). We can observe 
that the PES exhibits two “jumps”: this accounts for the two level 
changes of b  as  varies. Also, within each duration of constant 
b , energy efficiency of the optimal solution (3.18) improves as  
increases (a large  corresponds to a more inhomogeneous 
sensing environment). We note that a similar phenomenon has 
been observed in the existing works relying on instantaneous noise 
variance knowledge [3], [8], owing to the fact that, as the sensing 
condition becomes more inhomogeneous, it is more likely that a 
large fraction of sensors suffers from poor measurement quality 
and will thus be shut off, leading to improved energy efficiency. 
Since the proposed solution (3.18) (based on statistical noise 
variance description) would reflect the long-term characteristics of 
the schemes [3], [8], this consistency is thus expected. We repeat 
the experiment by fixing 0.4=  and varying the minimal 
threshold ; the results are shown in Figure 2. As we can see, the 
PES exhibits a counter tendency as compared to Figure 1: for each 
duration of constant b  the energy saving achieved by solution 
(3.18) is nonetheless lowered as  increases. This is reasonable 
since large ’s result in severe noise corruption in all sensor 
measurements: more sensor nodes should thus be turned on (thus 
potentially more energy consumption) to provide a sufficient 
amount of information for MSE reduction. Overall we also 
conclude from the figures that the proposed optimal solution is 
capable of reducing about 80%  energy consumption when 
compared with the uniform-allocation scheme; the energy saving 
efficiency is particularly significant when the minimal variance 
threshold is small or the variation factor is large. 
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Figure 1. (a) Percentage of energy saving; (b) Bit number of equal-energy 

scheme ( 0.8= ). 
 
 

 
Figure 2. (a) Percentage of energy saving; (b) Bit number of equal-energy 

scheme ( 0.4= ). 
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