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Abstract. Broadband beamforming, including frequen-
cy invariant beamforming, is often achieved by processing
the received sensor signals through tapped delay-lines. Un-
like most of the existing techniques, we propose a novel de-
sign method for three-dimensional frequency invariant beam-
formers without employing tapped delay-lines. The resul-
tant beamformer, which can form a beam steerable along
both the elevation angle and the azimuth angle, has a very
simple implementation . A design example is provided to
show the effectiveness of the proposed method.
Keywords. broadband arrays, frequency invariant beam-

forming, Fourier transform, tapped delay-lines

1. INTRODUCTION

Beamforming has been studied extensively in the past and
recently a lot of interest has been focused on a class of ar-
rays with frequency invariant responses [1, 2, 3, 4, 5, 6, 7, 8],
which can achieve a beam pattern independent of frequency,
and hence with a constant beamwidth. Traditionally a com-
mon feature of broadband beamforming is the use of tapped
delay-lines (TDLs), which can form a frequency dependent
response for each of the received broadband sensor signals
to compensate the phase difference for different frequency
components.
As a special class of broadband beamformers, in gen-

eral the design of a frequency invariant beamformer also re-
quires the use of tapped delay-lines. Recently, a rectangular
array with a frequency invariant property was proposed [9]
and then further studied in [10]. A special characteristic of
this beamformer is that there are no TDLs involved and only
one single weight is attached to each sensor. Because of the
symmetry of the pattern involved in the design, all of the
resultant array coef cients are real, and therefore any phase
shift in the array can be avoided, which greatly simpli es
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Fig. 1: A three-dimensional sensor array.

the circuits.
However, the problem with this kind of rectangular ar-

ray is that it can only form a beam along the azimuth angle
and basically it works as a linear array, which is due to the
ambiguity between frequency and the elevation angle. In
order to remove this ambiguity and achieve a beamforming
capability along both the azimuth angle and elevation an-
gle, i.e. functioning as a normal rectangular array, we need a
three-dimensional (3-D) array system. In this paper, we pro-
pose a novel design method for such a frequency invariant
3-D array without TDLs. In Section 2, the beam response
of a 3-D array is studied and based on our analysis a novel
design method is proposed. A design example is given in
Section 3 and nally conclusions are drawn in Section 4.

2. FREQUENCY INVARIANT BEAMFORMING
FOR THREE-DIMENSIONAL ARRAYS

Fig. 1 shows an equally spaced three-dimensional array in
the (x, y, z) space with a signal coming from a direction of
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(θ, φ). The spacing of the array elements in the x, y and z
directions is dx, dy and dz , respectively.
The array’s beam response with respect to temporal fre-

quency ω rad/s and angle of arrival (θ, φ) of the impinging
signal is given by

P (ω, θ, φ) =
∞∑

k,l,m=−∞

D(kdx, ldy, mdz)e
−j

kω sin θ cos φdx
c

e−j
lω sin θ sin φdy

c e−j
mω cos θdz

c , (1)

whereD(kdx, ldy, mdz) is the response of the sensor at the
position (kdx, ldy, mdz), k, l, m = . . . ,−1, 0, 1, . . . , and c
is the wave propagation speed. Note thatD(kdx, ldy, mdz)
is both a constant and independent of frequency, since there
are no tapped delay-lines or any other frequency dependent
processing for each received sensor signal.
With the following substitutions

ω1 =
ω sin θ cosφdx

c

ω2 =
ω sin θ sin φdy

c

ω3 =
ω cos θdz

c
, (2)

we have

P (ω1, ω2, ω3) =
∞∑

k,l,m=−∞

D(kdx, ldy, mdz) e−jkω1

·e−jlω2e−jmω3 . (3)

Obviously, the beam pattern of such a 3-D array can be
obtained by rst applying a 3-D Fourier transform to the
array’s coef cients D(kdx, ldy, mdz) according to (3) and
then using the above substitutions in (2). Since all the three
substitutions are functions of ω, the resultant beam pattern
in general will also be frequency dependent. Alternatively,
from the desired beam pattern P (ω, θ, φ), we can express it
in the form of ω1, ω2 and ω3 and then apply a 3-D inverse
Fourier transform to get the coef cientsD(kdx, ldy, mdz).
Likewise, to achieve a frequency invariant beam pattern

(P (θ, φ)), we again express P (θ, φ) as a function of ω1,
ω2 and ω3 and then inverse transform to get D(kdx, ldy,
mdz). The problem is, we need to nd a way to eliminate
ω in the expressions for θ and φ, otherwise, the resultant
D(kdx, ldy, mdz) will still be a function of ω and not a
constant as required. So in the following, we will propose a
substitution in the desired frequency invariant response for
θ and φ, in which ω will disappear due to a special arrange-
ment.
From (2), we can have

ω2dx

ω1dy

= tanφ

ω2

1
/d2

x + ω2

2
/d2

y

ω2

3
/d2

z

=
sin2 θ

cos2 θ
= tan2 θ . (4)

Thus, we easily obtain the following pair of substitutions
for θ and φ:

φ = arctan
ω2dx

ω1dy

θ = arctan

√
ω2

1
/d2

x + ω2

2
/d2

y

ω2

3
/d2

z

(θ ∈ [0;
π

2
]) . (5)

Now given the desired frequency invariant responseP (θ,
φ), the design of the 3-D uniformly spaced array can be de-
scribed as follows:

Step 1. Using the substitutions of (5) in P (θ, φ), we ob-
tain P (ω1, ω2, ω3), de ned over one period ω1, ω2, ω3 ∈
[−π; π).

Step 2. Applying a 3-D inverse Fourier transform to P (ω1,
ω2, ω3) returns the desired coef cients D(kdx, ldy, mdz)
for the corresponding sensors with in nite support. Suppose
the array dimension is K × L ×M . As an approximation,
we can employ the 3-D inverse discrete Fourier transform
(IDFT) by samplingP (ω1, ω2, ω3) on the K̃×L̃×M̃ points
of ω1 = −π+ 2k̃π

K̃
, k̃ = 0, 1, . . . , K̃−1, ω2 = −π+ 2l̃π

L̃
, l̃ =

0, 1, . . . , L̃−1, and ω3 = −π+ 2m̃π

M̃
, m̃ = 0, 1, . . . , M̃−1,

where K̃ > K , L̃ > L and M̃ > M . To t the dimensions
of theK × L ×M of the array, we need to truncate the re-
sultant D(kdx, ldy, mdz) to the size of K × L ×M . Note
that various “windows” could be used.

Now there is an effective region for the array’s response
in the (ω1, ω2, ω3) domain for a given frequency range of
interest. From (2), we can have

c2ω2

1

d2
x

+
c2ω2

2

d2
y

+
c2ω2

3

d2
z

= ω2 . (6)

Suppose the range of the frequency of interest is ω ∈ [ωmin;
ωmax], then we have

c2ω2
1

d2
x

+
c2ω2

2

d2
y

+
c2ω2

3

d2
z

∈ [ω2

min
; ω2

max
] . (7)

Therefore, P (ω1, ω2, ω3) can take any value without affect-
ing the array’s response to the frequency range of interest
for the following two regions

0 <
c2ω2

1

d2
x

+
c2ω2

2

d2
y

+
c2ω2

3

d2
z

< ω2

min (8)

and
c2ω2

1

d2
x

+
c2ω2

2

d2
y

+
c2ω2

3

d2
z

> ω2

max
. (9)

One easy choice is to assign a constant value to it for those
two regions. Intuitively, with this approach, the modi ed
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Fig. 2: The resultant beam pattern of the 3-D array at
f = 500Hz, with respect to azimuth (angle coordinate) and
elevation (radial coordinate).

P (ω1, ω2, ω3) will become smoother than the original one
and so the 3-D IDFT can lead to an improved design result.
In the above design, we rst need to have the desired fre-

quency invariant response, which can be obtained by a de-
sign method for narrowband beamformers and in this case,
a narrowband rectangular array. Normally, the P (θ, φ) ob-
tained will be in the form of F (sin θ cosφ, sin θ sinφ) —
see the next section for an example of such a desired re-
sponse. To avoid aliasing, dx, dy, dz ≤ λmin/2, where
λmin is the wavelength of the maximum frequency of in-
terest ωmax, and we set dx = dy = dz = λmin/2. Then for
ω > 0, from (2) and (6), we can easily derive the following
substitutions:

sin θ cosφ =
ω1√

ω2

1
+ ω2

2
+ ω2

3

sin θ sin φ =
ω2√

ω2

1
+ ω2

2
+ ω2

3

. (10)

So P (ω1, ω2, ω3) can be obtained as

P (ω1, ω2, ω3) = F (
ω1√

ω2

1
+ ω2

2
+ ω2

3

,
ω2√

ω2

1
+ ω2

2
+ ω2

3

) .

(11)

3. DESIGN EXAMPLE

In this section we provide an illustrative design example
for acoustic arrays. The frequency range of interest is be-
tween 500 Hz and 1500 Hz and the propagation speed is
340m/s. The dimensions of the 3-D equally spaced array
are 15×15×15 and the adjacent sensor spacing is set to be
34000/(2× 1500) = 11.33 cm. The desired beam pattern
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Fig. 3: The resultant beam pattern of the 3-D array at
f = 1500Hz, with respect to azimuth (angle coordinate)
and elevation (radial coordinate).
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Fig. 4: A slice of the beam pattern (θ, f) at azimuth angle
φ = 100◦.

is given by

F (sin θ cosφ, sin θ sin φ) =
1

9

1∑
l,m=−1

e−jlπ sin θ cos φ

e−jmπ sin θ sin φ . (12)

which forms a main beam towards the broadside θ = 0
and φ = 0. This desired frequency invariant response is
obtained by a narrowband rectangular array with uniform
weighting. Note that after the substitutions in (10) and (11),
the resultantP (ω1, ω2, ω3) is symmetric withP (ω1, ω2, ω3)
= P (−ω1,−ω2,−ω3). Hence the coef cients D(kdx, ldy,
mdz) we obtain after the inverse Fourier transform will be
real-valued and the resultant frequency invariant beamformer
is not only without tapped delay-lines, but also without phase-
shifters, which signi cantly simplify implementation.
We employed a 32 × 32 × 32-point 3-D IDFT on the
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Fig. 5: A slice of the beam pattern (θ, f) at azimuth angle
φ = 300◦.

resultant function P (ω1, ω2, ω3) and set P (ω1, ω2, ω3) = 0
for the area outside the frequency range [400Hz; 1700Hz]
according to equations (6) to (9). We left the region be-
tween 400 Hz and 500 Hz and the region between 1500 Hz
and 1700 Hz as the transition bands. Since the beam pattern
is four-dimensional, we can only provide some exemplary
snapshots. Figs. 2 and 3 give the array’s response in cylin-
drical coordinates to the frequencies f = 500 Hz and 1500
Hz, respectively. The height axis is the magnitude response
of the beam, the radial coordinate is for the elevation angle θ
and the angle coordinate is for the azimuth angle φ. The fre-
quency invariant property can be veri ed by the clear sim-
ilarity of these two gures. In addition, the response with
respect to θ and f for two different values of φ are given in
Figs. 4 and 5, with φ = 100◦ and 300◦, respectively. The
frequency invariant property is clearly visible.

4. CONCLUSIONS

We have proposed a novel frequency invariant beamform-
ing design method for three-dimensional broadband arrays
without tapped delay-line processing. Different from the
previously proposed rectangular arrayswithout tapped delay-
lines, this 3-D array can form a beam steerable along both
the azimuth angle and the elevation angle and has a very
simple implementation. A design example has been pro-
vided, yielding satisfactory frequency invariant characteris-
tics over the range of frequencies of interest.
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