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ABSTRACT

Signals acquired through a microphone array are typically

beamformed to combine channels and improve the signal-to-

noise ratio (SNR). However, it has been previously shown that

alternative methods for handling multi-channel systems can

outperform beamforming for speech recognition applications.

In this paper, we implemented a comprehensive set of classi-

fication tests using multiple classifiers and feature extraction

techniques to determine whether the alternative methods gen-

eralize beyond speech recognition applications. We show that

applying the alternative methods (in a slightly simpler form)

outperforms beamforming when used for classifying transient

acoustic projectile weapon signals. Furthermore, an addi-

tional technique is introduced which outperforms both beam-

forming and previously proposed alternatives in certain clas-

sification scenarios. For the majority of classification tests,

the improvements seen through the use of these alternative

methods are statistically significant.

Index Terms— Pattern classification, feature extraction,

cepstral analysis, acoustic beam steering, transient propaga-

tion.

1. INTRODUCTION

In many classification applications involving microphone ar-

rays, it is common to combine the signals from each element

of the array to yield event predictions. Beamforming can im-

prove the signal-to-noise ratio (SNR) by steering the array in

the source direction. Typically beamforming or other multi-

channel combination techniques are applied before classifi-

cation. Alternatively, the channel combination methods pro-

posed by Wang et al. [1] independently classify each chan-

nel and provide an event prediction by combining class likeli-

hoods assigned during classification. Originally designed for

speech recognition applications, we simplify this method for

a more generalized class of signals.

In this paper, we summarize the key results of a compre-

hensive set of classification tests on a database of transient

acoustic projectile weapon signals acquired with a 4-channel
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microphone array. These tests were designed to compare the

baseline beamforming technique to several alternative chan-

nel combination methods.

2. CHANNEL COMBINATION METHODS

This section describes methods for combining signals cap-

tured with a microphone array. Fig. 1 and Fig. 2 display

the differences between microphone array event classification

with beamforming and the alternative processing techniques

discussed in this paper.
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Fig. 1. Event classification with standard beamforming.

Chan 1

Chan 2

Chan N

Classi er

Classi er

Classi er

Combination Class 
Prediction...

Fig. 2. Event classification with a likelihood-dependent chan-

nel combination.

2.1. Beamforming

Beamforming is a mature signal processing technique. See,

for example, Brandstein and Ward [2] for a review. We imple-

mented a simple delay-and-sum beamformer, where the array

channels are combined by summing time-aligned versions of

each signal. The beamformed event is then represented by a

single signal and sent through a classifier (Fig. 1). The classi-

fier outputs a set of probabilities (or likelihoods) {pc} where
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c is one of a finite number of classes. The classifier then pre-

dicts the class with the highest probability,

ŷ = argmax
c

pc. (1)

2.2. Likelihood-Dependent Channel Combination (LDCC)

Likelihood-dependent channel combination (LDCC) is a sim-

plified version of the previously proposed single-decoder pro-

cessing technique [1]. The Viterbi decoder stage of the single-

decoder processing method becomes unnecessary for our class

of signals. Instead of combining channels before classifica-

tion (as with beamforming), each channel is classified indi-

vidually and combined using their assigned class likelihoods

(Fig. 2). These likelihoods will be written pg,c where g ∈
{1, 2, . . . , N} for N channels. The following three methods

for combining class likelihoods are investigated.

The voting-method [1] finds the class with the largest like-

lihood for each channel ŷg and computes a majority vote over

the chosen classes,

ŷ = argmax
c

∑
g

Iŷg=c. (2)

A tie is settled by summing the likelihoods associated with

the tie and choosing the class associated with the maximum

sum.

The maximum-summation-likelihood method [1] is found

by summing across the channel likelihoods. A class is then

predicted based on the largest marginal,

ŷ = argmax
c

∑
g

pg,c. (3)

The maximum-likelihood method is an extension to the

two previously discussed methods. This method predicts a

class by finding the maximum likelihood over all channels

and all classes.

ŷ = argmax
g,c

pg,c. (4)

Each of the above methods provide simple automatic data

censoring. A malfunctioning channel may have very little ef-

fect in the above methods, but may highly distort a beam-

formed signal.

3. DATABASE

To test the above-mentioned techniques, we used a set of

multi-channel transient acoustic signals provided by the Army

Research Laboratory.

The database consists of digital sound recordings of the

launch and impact sounds from three types of weapons: mor-

tars, rockets, and rocket-propelled grenades (RPGs). The sig-

nals are transient, on the order of 500 milliseconds in dura-

tion, and significant reverberation and/or dispersive effects

are audibly present. The database contains six possible classes,

all hand-labeled during acquisition. A total of 1200 events

were recorded, each with four channels (one for each micro-

phone in the system). Table 1 shows the number of events

associated with each class. In addition to the 6-class prob-

lem, 2 and 3-class problems were investigated by appropri-

ately grouping classes, providing a greater understanding of

the classification potential. The 2-class problem was Impact

vs. Launch. The 3-class problem was Mortar vs. Rocket vs.

RPG.

Table 1. The number of events organized by class.

Launch Impact

Mortar 505 340

Rocket 56 15

RPG 51 50

These acoustic signals were captured by an Unattended

Transient Acoustic MASINT (measurement and signatures

intelligence) System (UTAMS). This 4-channel microphone

array forms a regular tetrahedron and is configured as shown

in Table 2. The array is typically raised approximately one

meter off the ground, so Mic1 is a total of two meters above

the ground.

Table 2. Geometric configuration of UTAMS 4-channel mi-

crophone array (in meters).

x-coor y-coor z-coor

Mic1 0 0 1

Mic2 0 1 0

Mic3 -0.866 -0.5 0

Mic4 0.866 -0.5 0

The array microphones were made by Knowles Acous-

tics, model BL-1994. A 24-bit PAR4CH A/D converter made

by Symmetric Research was used to digitize the signals at a

sampling rate of 1001.602 Hz.

4. CLASSIFICATION

Both parametric and non-parametric classifiers were imple-

mented to provide a thorough comparison between beamform-

ing and the alternative methods. To evaluate the classifier per-

formance, a standard 10-fold cross-validation method [3] was

implemented.

4.1. Feature Extraction

Feature vectors of dimension m were extracted from the orig-

inal time series to provide more discriminable and lower di-

mensional information to the classifiers. In speech recog-

nition applications, cepstral processing techniques are typi-

cally employed to extract useful signal features for classifica-

II  994



tion. In previous experiments with this database, we consid-

ered several cepstral based features including: standard lin-

ear frequency cepstrum, minimum-phase cepstrum, averaged

minimum-phase cepstrum, delta cepstrum and cepstral mean

normalized versions of each [5]. The minimum-phase cep-

strum is found by computing the cepstrum on the minimum-

phase component of a signal after a minimum-phase/all-pass

decomposition. (This is useful in many practical scenarios

because the minimum-phase portion of a time series has been

shown to be less affected by reverberation [6]). Averaging the

minimum phase cepstrum is another feature extraction tech-

nique used to help remove echos and reverberation effects [7].

Delta features are found by concatenating time-differenced

cepstral features with the original cepstrum to provide a fea-

ture vector with presumed perceptually useful temporal signal

information [4]. Cepstral mean normalization is a processing

technique used to remove unknown linear filtering operations.

From the above feature extraction techniques, delta cep-

strum features were shown to provide superior classification

results for this database, and are used in this paper.

4.2. Classifiers

4.2.1. GMM

Statistical parametric classifiers fit a probability distribution

in feature space to the training points of each class. We as-

sumed the classes in this database might not be represented

by a single Gaussian distribution, hence a Gaussian mixture

model (GMM) was employed. GMMs generate probability

distributions by summing several m-dimensional weighted mul-

tivariate Gaussian distributions (called “mixture components”).

The weights and Gaussian parameters are fit with an expec-

tation maximization algorithm during the classifier training

process. More detailed information about this classifier can

be found in [8].

4.2.2. LIME

Linear interpolation with maximum entropy (LIME) is a non-

parametric classifier that generalizes the k-nearest-neighbors

(k-NN) classifier by applying a non-uniform weight to each

neighbor [9]. LIME has been shown through simulations to

achieve a lower bias than other neighborhood methods, and

to consistently outperform other weighted k-nearest-neighbor

classifiers.

The class prediction equation for LIME is the same as for

k-NN:

ŷ = argmax
g

∑
i∈Jk

wiIyi=g, (5)

where
∑

i∈Jk
wi = 1, and Jk denotes the set of k neighbor

training points. The weights wi are computed by minimizing

the distance between the test point and a linear interpolation

of the training points. For the solution to be unique, a scalable

maximum entropy term is incorporated to force the weights

toward a uniform distribution. The LIME weights w∗ solve

the following objective function,

w∗ = argmin
w

(
||wT X − xT ||22 + λ

k∑
i=1

wi log wi

)
, (6)

where X is a k-by-m matrix with the training points as rows,

x is a test point (in m dimensions), and λ is a trade-off pa-

rameter. Because the LIME objective function (6) is convex,

standard convex optimization methods can be used to solve

for w∗.

When λ is nearly zero, the weights are found such that

they minimize the distance between the test point and the lin-

ear interpolation of the training points. When λ is large, the

focus is put on maximizing the entropy (achieving a uniform

weighting like k-NN).

The probability associated with the prediction ŷ will be

defined as

p =
∑
i∈Jk

wiIyi=ŷ, (7)

which simply sums the weights of the training points asso-

ciated with the predicted class. More information about the

theoretical properties and performance of LIME can be found

in [9, 10].

4.3. Parameter Optimization

When building a classifier, there are often several parameters

that need to be tuned to optimize classification performance.

The candidate parameter sets for GMM and LIME are shown

below. For each classification scenario (e.g. 2-class, GMM,

maximum-likelihood method) a single value from each set is

found to jointly minimize the classification error-rate. This

was done using 10-fold cross-validation and an exhaustive

search over these candidate parameters. More details on the

choice of candidate parameter values can be found in [5].

Two parameters are optimized for the GMM classifier:

1. m = {10, 20, 30, 40, 50, 60},
2. number of mixture components = {2, 4, 6, . . . , 20, 22}.

Three parameters are optimized for the LIME classifier:

1. m = {10, 20, 30, 40, 50, 60},
2. k = {10, 20, 30, 40},
3. λ = {10-5, 10-4, 10-3, 10-2, 10-1, 1}.

5. RESULTS

The optimal classification error-rates achieved for each classi-

fication scenario are shown in Table 3. A chance performance

is also included showing the error-rate for a classifier that al-

ways predicts the most abundant class (largest prior). For

each row in the table, the beamforming method is always infe-

rior to the best LDCC method (in bold-face). The maximum-

summation-likelihood method provides the lowest error-rate
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Table 3. Classification error-rates (%).
Baselines LDCC

Cha- Beam- Vote Max- Max

nce form Sum

2 Class
GMM 39.9 19.5 17.7 15.8 18.6

LIME 39.9 17.9 15.8 15.8 15.5

3 Class
GMM 16.8 14.3 10.2 9.1 9.4

LIME 16.8 9.6 11.2 9.7 8.4

6 Class
GMM 50.3 29.3 24.0 21.0 24.3

LIME 50.3 24.6 22.6 21.0 21.1

for the GMM classifier; however, the maximum-likelihood

method appears more promising for the LIME classifier.

As with the previous study in speech recognition, we are

able to achieve higher performance when using the alterna-

tive channel combination methods. However, a test was not

conducted in [1] to verify the statistical significance of the

the resulting error-rate differences between beamforming and

the alternative processing methods. We chose to measure the

statistical significance using a two-tailed binomial test [11].

For each row, a significance value (p-value) was obtained by

a pairwise comparison of the best LDCC method with the

baseline beamforming method. The statistical significance

level is interpreted as the probability that the differences in

the observed classification performances is due to chance.

Therefore, low levels indicate a strong difference (high signif-

icance) between methods. Typically, p-values less than 0.05

are considered significant. Table 4 shows the error-rate dif-

ference and the p-value between beamforming and the best

LDCC method.

Table 4. LDCC error-rate improvement over beamforming

with associated p-values.

Improvement p-value

2 Class
GMM 3.7% 1.8e-10

LIME 2.4% 6.5e-02

3 Class
GMM 5.2% 1.1e-10

LIME 1.2% 1.4e-01

6 Class
GMM 8.3% 2.5e-12

LIME 3.6% 1.1e-02

As shown in Table 4, with a standard p-value significance

level of α = 0.05, four out of the six results are statistically

significant, and the others are within 10% of being signifi-

cant. It is interesting to note that the GMM p-values are much

smaller than those for LIME. Much of this has to do with the

fact that the GMM classifier exhibits more improvement than

LIME, even though LIME is almost always a superior classi-

fier for this database.

6. CONCLUSIONS

Through comprehensive classification tests, we have verified

that beamforming is not always the optimal channel combina-

tion technique for multi-channel signal classification. Chan-

nel combination methods proposed for speech recognition have

been shown to generalize to a much different class of sig-

nals. Furthermore, the additional method proposed in this pa-

per outperformed all other techniques in several classification

tests.

Investigating the theory to explain the performance en-

hancements we have shown would be an interesting next step.
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