
OPTIMIZED BEAMFORMING CALIBRATION IN THE PRESENCE OF ARRAY
IMPERFECTIONS

Maria Lanne∗ , Astrid Lundgren and Mats Viberg

Chalmers University of Technology
Department of Signals and Systems

Gothenburg, Sweden

ABSTRACT

For arrays with position and channel errors the calibration be-
comes very crucial. In the traditional calibration methods one can
choose between an optimal SNR and a beam pattern with low side
lobes. In this paper we formulate a beam pattern synthesis method
which optimize the trade-off between the two criteria.

A classical problem with position errors in an array, is that it is
difficult to get low side lobes over the whole side lobe region, since
the position errors give rise to direction dependent errors. In this pa-
per this problem is solved by using local (direction dependent) cor-
rection matrices in the beam pattern optimization. The new way of
using local correction matrices leads to the lowest possible uniform
side lobe level, for the chosen SNR, beamwidth and beam pointing
direction.

Index Terms— Antenna arrays, calibration, array signal process-
ing, robustness.

1. INTRODUCTION

Traditionally array antennas have been manufactured with a high
mechanical and electrical accuracy. But in some applications it can
still be difficult to keep a perfect mechanical shape (such as in space
applications with inflatable large arrays), and it is also possible that
lower manufacturing cost could be achieved if the tolerances in the
manufacturing process was not so tough. But increased errors in
the array of course has its price. Especially errors which give rise
to direction dependent errors, such as position errors, require some
special treatment.

In a previous paper [1], array calibration methods for arrays with
position and channel errors were evaluated using MUSIC for Direc-
tion Of Arrival (DOA) estimation. It was found that if a local (di-
rection dependent) calibration was used instead of a global (direction
independent) calibration [2], the DOA estimation performance in the
presence of direction dependent errors was improved substantially.

In the DOA estimation with calibration using local models, one
correction matrix was used for each direction of interest. But to
receive a signal from a certain direction using beamforming, we only
have one set of weights which should fulfill our requirements to both
receive the interesting signal and suppress the external noise from
e.g. ground clutter without amplifying the internal noise in the array.
If the array has both direction dependent and direcion independent
errors, we can choose between an optimal SNR (Signal to Noise
Ratio) for internal noise or a good beam pattern. In this paper an
alternative beamforming method is derived which offers a possibility
to choose in the trade-off between a high SNR or low side lobe level.
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A well-known problem with position errors is, that it is difficult to
achieve low side lobes over the whole side lobe region. Therefore we
introduce a new way of using local correction matrices in the beam
pattern synthesis, which makes it possible to get low side lobes over
the whole side lobe region.

Several papers have been written on array calibration, and two
main approaches can be discriminated between; calibration using
sources of known locations, [2] and [3], and auto-calibration using
unknown locations [4]. Auto-calibration methods are generally lim-
ited to small errors and require a known error model. If there are no
position errors (or any other errors which are direction dependent) a
global (direction independent) calibration can be used [2]. Paramet-
ric methods are often used to be able to handle the position errors [3]
and [4]. Our local calibration method is a non-parametric method,
which does not require any a priori knowledge about the array errors.
Furthermore, large errors can be handled and the calibration grid can
be made sparse, which is discussed in a companion paper [5]. In this
paper, the local calibration is included in the beam pattern synthe-
sis. For a good reference on array pattern synthesis using convex
optimization, see [6]. Our way to apply local correction matrices
in the pattern synthesis could also have been used on their synthe-
sis method, but our chosen method gives better control of the white
noise gain.

In this paper vectors are written in bold lower case letters, and
matrices in bold upper case letters. The transpose of a vector a is
marked aT while the complex conjugate transpose is marked a∗.
The complex conjugate transpose of the inverse of a matrix A is
written A−∗.

2. TWO DIFFERENT CALIBRATION METHODS

If a signal s(t) arrives at an array from direction θ0, the output from
the array x(t) can be modelled as

x(t) = a(θ0)s(t) + η(t), (1)

where η(t) is noise with covariance matrix σ2I and a(θ) is the steer-
ing vector for direction θ0, which for a uniform linear array is given
by

a(θ0) = [1, ejΔk sin(θ0), ..., ejΔk sin(θ0)(m−1)]T , (2)

where Δ is the distance between the sensors, m is the number of
sensors and k = 2π/λ where λ is the wavelength.

To be able to use the data model in (1) for a real array with
imperfections, the ideal steering vector a(θ0) is replaced by a real
steering vector amod(θ0) including the imperfections. It is given by

amod(θ0) = Qa(θ0), (3)
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where Q is a matrix, called the correction matrix. The imperfections
can consist of any type of direction dependent or direction indepen-
dent errors and also mutual coupling, but in the examples here, only
channel errors (errors regarding amplification and phase shift in the
receiver channels) and positional errors are included.

Traditionally, the correction matrix has been applied to beam-
forming in two different ways. In the first method, the SNR regard-
ing the internal noise in the receiver channels is maximized for a
signal received from direction θ0. The weights are chosen as [7, Ch.
3]

vsnr = amod(θ0) = Qa(θ0). (4)

This can be shown by using Schwarz Inequality. Denoting the signal
power P , the SNR at the array output is given by

SNR =
P

σ2

|v∗amod(θ0)|2
‖v‖2

≤ P

σ2
‖amod(θ0)‖2, (5)

where the equal sign is for v = amod(θ0). These weights corre-
spond to a matched filter to the distorted array steering vector.

The other method is to use the virtual array approach [8]. Then
the received data is filtered so that it appears to come from a ULA
without errors by pre-mulitiplying the received signals x(t) with the
inverse of the correction matrix Q

xcorr(t) = Q−1x(t). (6)

Writing the output signal from the array

y(t) = a∗xcorr(t) = a∗Q−1x(t) = vvirt
∗x(t), (7)

it is obvious that the pre-multiplication can also be performed by
modifying the weights according to

vvirt = Q−∗a(θ0). (8)

Using the virtual array approach (8), the SNR regarding internal
noise is no longer optimal, but in Section 5.1 we will see that the
side lobes generally become lower.

If the true correction matrix Q is used to calculated the weights,
the SNR for the two methods are

SNRsnr =
P

σ2
‖amod(θ0)‖2

(9)

and

SNRvirt =
P

σ2

‖a(θ0)‖4

|Q−∗a(θ0)|2 , (10)

respectively. In reality, the correction matrix Q is unknown and the
SNR is calculated from (5) using an estimate of the correction ma-
trix. How to estimate the correction matrix from calibration mea-
surements is explained in Section 4.

Finally, the SNRgain is defined as

SNRgain =
SNR

P
σ2 |amod(θ0)|2

, (11)

which results in an SNRgain between 0 and 1.

3. OPTIMIZED BEAMFORMING WITH CALIBRATION

In the section above, the calibration was a choice between good SNR
for internal noise or good beam pattern. So the question is, how can
we ensure we get both? Further more, for a ULA one can easily
achieve a desired side lobe level by using a taper. In an array with
position and channel errors, it is possible to use a taper together with

the virtual array calibration, but due to the position errors it is dif-
ficult to get the same low side lobe level over the whole side lobe
region.

One solution is to optimize the weights such that all our require-
ments are fulfilled. The aim is to achieve a good beam pattern with
a uniform side lobe level and at the same time be able to control the
SNR for internal noise. The optimization problem is formulated as
a numerical minimization problem with constraints. The maximum
side lobe level over the side lobe region specified by θsidelobes is
minimized, subject to having maximum sensitivity in the main beam
direction θ0 and an SNRgain larger than SNRmin

gain, according to

v = arg min
v

[max{|Ĝ(θ)|2} ∀θ ∈ θsidelobes]

s.t. ‖v‖2 <
1

SNRmin
gain

(12)

and
Ĝ(θ0)

‖âmod(θ0)‖ = 1,

where Ĝ(θ) = v∗âmod(θ), âmod(θ) = Q̂(θ)a(θ) and θ is the
variable angle of the beam pattern. Inserting the first part of (5)
and the second constraint in (12) into (11), leads to SNRgain =
1/‖v‖2. This explains how the constraint put on the norm squared
of the weights sets a lower limit of the SNRgain.

As will be shown below, it is important that the local Q̂(θ) and

not the global correction matrix Q̂ is used in (12) to ensure that for
each direction we have the best description of how the array receives
signals. Local and global correction matrices are further explained
in the section below. The examples in the end of the paper show that
if local correction matrices are used, the minimization problem in
(12) leads to equi-ripple side lobes which are as low as possible for
the selected minimum allowed SNRgain. The region over which
the side lobes are given, specifies the width of the main beam. The
optimization method is quite convenient, since there are only two
parameters to be varied, the main lobe width and the SNRgain.

The implementation was made using fminimax from MATLAB’s
optimization toolbox. This function cannot handle a continuous vari-
able, so the side lobe region was defined by a vector θsidelobes of
discretized directions. If the grid is chosen too sparse, uncontrolled
side lobes may appear between the grid points. User experience has
shown that this is avoided by choosing the angular separation be-
tween the grid points less or equal to half the half-power beamwidth.

Finally, it should be mentioned that the proposed optimization
has similarities with adaptive algorithms such as Capon’s algorithm
in the sense that it maximizes the SNR while preserving the desired
signal. Using Capon’s method, however, the side lobe topology is
not set on before hand, but given by the statistics of the received
array data. A beam pattern with a general low side lobe level is of
interest, for example, in situation where there might be one or more
unknown interferers.

4. LOCAL OR GLOBAL CORRECTION MATRIX

Two ways of estimating the correction matrix Q from calibration
measurements will be demonstrated. The calibration is performed in
the following way. First calibration data is collected. One trans-
mitter is used and moved in a grid of calibration angles θcal =
[θcal1, . . . , θcalj , . . . , θcalJ ], where J is the number of calibration
angles. For each angle a steering vector âmeas(θcalj) is estimated
from the measurement data x(θcalj) by picking out the principal
eigenvector of the covariance matrix of x(θcalj). These steering
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vectors characterize the array. The covariance matrix is estimated
using time averaging.

In this paper both local [1] and global calibration [2] are used.
In both cases a correction matrix is calculated as the optimal matrix
in a (weighted) least-square sense according to

Q̂ = arg min
Q

‖(Âmeas(θcal) − QA(θcal))W
1/2‖F , (13)

where the subscript F means Frobenius norm, W is a weight matrix,
θcal is the vector of calibration angles, Âmeas(θcal) is a matrix
with all the estimated steering vectors and A(θcal) is a matrix with
the corresponding ideal steering vectors. In the global case, the ma-
trix W is the identity matrix and Q̂ is direction independent. Only
one, full, matrix is calculated for all values of θ. In the local case, the
weight matrix W(θ) is direction dependent, and one Q̂(θ) is calcu-

lated for each θ of interest. Since each matrix Q̂(θ) is calculated for

a single direction θ, only a diagonal local correction matrix Q̂(θ) is
needed.

The weight matrix W(θ) should have the property that cali-
bration data for angles θcalj close to θ are given high weight. In
this paper, W(θ) is a diagonal matrix with the diagonal elements,
wj(θ) = exp(−hDj) and the distance function Dj = |θ − θcalj |2.
The parameter h determines the width of the weight function. In this
paper it is set by trial and error, but it can also be calculated from
the calibration angles using a leave-one-out approach, see [9]. Also
other distance functions can be used, but the choice is not so crucial
as long as the parameter h is large.

5. EXAMPLES

Array data containing channel and position errors has been simulated
using the function

x(t) = Da(θ0)s(t) + η(t), (14)

where D is a diagonal matrix modelling channel errors as complex
white gaussian additive noise with standard deviation 0.5, η is addi-
tive white gaussian noise in the receiver channels having unit stan-
dard deviation and the signal s(t) is 20dB above the noise η. The ar-
ray is assumed to be an m = 16 element array of isotropic elements.
The steering vector a(θ0) has been modified to include random posi-
tional errors evenly distributed between −0.125λ and 0.125λ in the
direction along the array. The nominal element separation is 0.5λ.

In the examples below, both calibration and validation data are
simulated using the data model in (14). All beam patterns in this
paper are calculated for the same realization of the position and
channel errors. The beam patterns are calculated using |G(θ)|2 =
|v∗amod(θ)|2/‖v‖2, and presented as 2D directivity according to

dir = 2π|G(θ)|2/ ∫ 2π

0
|G(θ′)|2dθ′.

5.1. Evaluating the two classical calibration methods

We will now evaluate the SNRgain and the beam patterns for an
array with position and channel errors using calibration for optimal
SNR (4) and the virtual array calibration (8). We differ between four
different cases. Using the true correction matrix Q, estimating the
correction matrix Q̂ using local or global calibration or using no cor-
rection matrix, that is using v = a(θ0). For the local calibration, we
use the correction matrix which is optimized for the beam pointing
direction, in this case θ0 = 20◦.

Calibration data was created over the region ±90◦ every 5th de-
grees and 1000 snapshots were used to estimate the calibration steer-
ing vectors. For the local calibration method the angular bandwidth

Table 1. Optimal SNR calibration with different correction matrices.

Method SNRgain Cond (Q)
vsnr = Qa(θ0) 1.00 0.29

vsnr = Q̂globala(θ0) 0.997 0.14

vsnr = Q̂local(θ0)a(θ0) 1.00 0.29

Table 2. Virtual array calibration with different correction matrices.

Method SNRgain Cond (Q−∗)
vvirt = Q−∗a(θ0) 0.611 0.29

vvirt = Q̂−∗
globala(θ0) 0.559 0.12

vvirt = Q̂−∗
local(θ0)a(θ0) 0.611 0.29

parameter h was set to 500. The resulting SNRgain was calculated
using 10000 simulations with different position and channel errors.
The results calculated using weights for the optimal SNR method is
shown in Table 1 and the results for the virtual array approach in
Table 2. Without calibration, the resulting SNRgain is 0.794. The
SNR is apparently better for the optimal SNR method. The virtual
array method gives worse results, especially for the global calibra-
tion, which also has the lowest condition number of the correction
matrix (marked with Cond Q and Cond Q−∗ in Table 1 and 2, re-
spectively).

The beam patterns calculated using weights for optimal SNR (4)
are shown in Figure 1 and for the virtual array approach (8) in Figure
2. A Taylor taper (three side lobes 30 dB below main lobe maxi-
mum) is applied to the weights. The results depend on the specific
position and channel errors, but still some general conclusions can
be drawn. The beam patterns for the optimal SNR method (Figure 1)
are in general poor (high side lobes, and in this case also shoulders
on the main beam). The virtual array method (Figure 2) with a local
correction matrix gives a good beam pattern only close to the main
beam, since the local correction matrix only tries to equal a ULA in
the beam direction. The global correction matrix tries to achieve a
ULA over the whole calibration region and gives a good beam pat-
tern over a wider angular sector. Still, for far-out side lobes it fails,
and high side lobes appear.

If there are only channel errors (no position errors), the side lobe
level becomes better. This is due to that channel errors can be com-
pensated for in the same way for all directions, while the compensa-
tion for position errors is direction dependent.
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Fig. 1. Beam pattern using a Taylor taper (three side lobes 30 dB
below main lobe maximum) and optimal SNR calibration with dif-
ferent correction matrices.
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Fig. 2. Beam pattern using a Taylor taper (three side lobes 30 dB be-
low main lobe maximum) and virtual array calibration with different
correction matrices.

5.2. Evaluating the optimized beamforming

This section shows some results from using the beam pattern opti-
mization, and the importance of using local correction matrices in
the optimization.

First, let us study an array without position and channel errors,
but otherwise the array is given by the parameters specified in Sec-
tion 5. The side lobe region was ±90◦ (sampled every 0.2◦) ex-
cept for the region ±9◦ around the main lobe direction. Figure 3
shows the resulting beam patterns using a global correction matrix.
Setting SNRmin

gain = 1 (the maximum possible) leads to beamform-
ing weights v with a uniform distribution, while allowing a slightly
lower SNRmin

gain gives an equi-ripple side lobe pattern with a slightly
wider main beam. Adding channel errors, almost as good beam pat-
terns can be achieved, but at the cost of a lower SNRgain.

Next, both position and channel errors are added. Figure 4 shows
the beam patterns for the global and local correction matrices with
different SNRgain. (The result depends on the specific errors.) The
global correction matrix gives rise to high side lobes far from broad-
side, due to an insufficient description the position errors (also ob-
vious in Figure 2, global correction matrix). Using the local correc-
tion matrices, equi-ripple side lobes are achieved and the trade-off
between low side lobes and high SNR is obvious. We can also con-
clude that the position errors lead to an increased side lobe level.

In the example, only position errors along the direction of the
array was studied, but also other types of position errors can be han-
dled. Furthermore, if other types of side lobe topographies are de-
sired, these can be included by rewriting the side lobe requirement.
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Fig. 3. Beam pattern from optimization. No errors.
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Fig. 4. Beam pattern from optimization. Position and channel errors.

6. CONCLUSIONS

In an array with position and channel errors, the choice of how to use
the correction matrix to calibrate the array becomes a trade-off be-
tween a high SNR for internal noise and a beam pattern with low side
lobes. To combine the requirements, a new beamforming optimiza-
tion method including a direction dependent array description was
proposed. Using the method, a beam pattern with uniform side lobe
level can be achieved also for arrays with large position errors. Fur-
thermore, an array with position errors and channel errors was found
to not give the same low side lobe level (for a fixed beamwidth and
SNR), as the corresponding array without errors.
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