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ABSTRACT

In this paper a number of covariance matrix estimators suggested in

the literature are compared in terms of their performance in the con-

text of array signal processing. More specifically they are applied in

adaptive beamforming which is known to be sensitive to errors in the

covariance matrix estimate and where often only a limited amount of

data is available for estimation. As many covariance matrix estima-

tors have the form of diagonal loading or eigenvalue adjustments of

the sample covariance matrix and as they sometimes offer robustness

to array imperfections and finite sample error, they are compared

to a recent robustified adaptive Capon beamforming (RCB) method

which also has a diagonal loading interpretation. Some of the co-

variance estimators show a significant improvement over the sample

covariance matrix and in some cases they match the performance of

the RCB even when a priori knowledge, which is not available in

practice, is used for choosing the user parameter of RCB.

Index Terms— Array signal processing, Covariance matrices,

Direction of arrival estimation

1. INTRODUCTION

The Maximum Likelihood (ML) estimate of the covariance matrix

under the Gaussian i.i.d. assumption, i.e., the sample covariance ma-

trix, R̂S = 1
N

�N

t=1 x(t)x
H(t), performs poorly when the number

of observations, N , is approaching the dimension,M , of the observ-

ables, or snapshots, x(t). Considering that the number of unknown
parameters grows quadratically in M it is understandable that esti-

mating large covariance matrices from limited data is problematic.

Since the pioneering work in [1], where it was shown that the

the sample covariance matrix can be improved upon, numerous en-

hanced covariance matrix estimators have been proposed in the sta-

tistical literature. The various covariance matrix estimators are often

derived and compared based on different costs or loss functions. An

estimator that is optimal or nearly so for a specific loss is not nec-

essarily well behaved with respect to another loss. Furthermore, the

behavior in a specific scenario or in a specific application may be

hard to predict from the corresponding loss function used to derive

it and assess its performance.

Our interest lies in array signal processing and minimum vari-

ance beamforming for signal reception and spatial spectrum estima-

tion. These are applications where the performance is severely af-

fected by errors in the covariance matrix estimate and where data

sometimes is hard to obtain in sufficient quantity. Hence, our com-

parison of the covariance matrix estimates is based on how they be-

have in these applications.

In this study a multitude of covariance matrix estimators were

implemented and tested. However, due to space limitations only a

few of the more interesting ones are reported upon here. In Chapter

9 of [2] a more extensive report of our results is given along with a

description of all estimators tested. Therein, also a space-time adap-

tive processing (STAP) [3] detection problem is used to evaluate the

covariance matrix estimators.

2. THE CAPON BEAMFORMER AND THE ROBUST

CAPON BEAMFORMER

Assume that a narrowband signal of interest impinges on an array of

M sensors. The vector of array measurements can be modeled as

x(t) = a(θs)s(t) + n(t) ∈ C
M×1 for t = 1, . . . N, (1)

where θs is a parameter vector determining the location of the signal

source and a(θ) is the array response for a generic source location,
θ. The noise/interference term n(t) is zero mean and temporally
white with spatial covariance matrix Q. We model the unknown

s(t) as a zero mean white random process.
In order to recover the signal of interest the Capon beamformer

[4] linearly combines the array output of (1) using a vector of weights,

wH, according to

argmin
w
w

H
Rw s.t. w

H
a(θs) = 1 (2)

where ideally R = Q. In practice when Q is unknown, R is re-

placed by an estimate R̂ of the full data covariance matrix, usually

R̂S. The solution to (2) is readily found (see, e.g., [5]) as

w =
R−1a(θs)

a(θs)HR−1a(θs)
.

When the covariance matrix is inaccurately estimated, such as when

the number of data samples available is limited, it is well known

that the Capon beamformer has a tendency to cancel the desired sig-

nal leading to a suboptimal signal to interference plus noise ratio

(SINR) and an underestimated signal power. Signal cancellation is

also a problem when the interferences are correlated with the sig-

nal of interest and when the steering vector is subject to unknown

perturbations.

In this paper we will use the Capon beamformer together with

different estimates of the covariance matrix from the literature in

order to compare the performances of the latter estimates. We will

also compare them to a robustified version of the Capon beamformer

(RCB) [6, 7] originally developed for mitigating signal cancellation

in the case of an uncertain array steering vector, a(θs). RCB has
also showed robustness to errors in the covariance matrix due to lim-

ited data. The design criterion for RCB can be written

min
w,a0(θs)

w
H
Rw s.t. |wH

ao(θs)| ≥ 1

and s.t. ‖a0(θs)− a(θs)‖
2 ≤ ε (3)

where a(θ) is the presumed steering vector and a0(θ) is the true
and unknown steering vector, which is assumed to belong to an un-

certainty set defined by the inequality constraint in (3). A drawback

of the RCB method however is that the size of the uncertainty set ε
has to be provided by the user.
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3. COVARIANCEMATRIX ESTIMATORS

In the literature most estimators ofR are derived for real valued data

only. In our application, however, the data and the noise processes

are complex valued. By stacking the real and imaginary parts of the

data and lettingRr denote the covariance matrix of the so-obtained

vector

Rr � E

��
xr(t)
xi(t)

� �
x�r (t) x�i (t)

� �
�

�
Rrr Rri
Rir Rii

�

the complex covariance matrix can be formed according to

Rc � E
�
x(t)xH(t)

�
= Rrr +Rii + j (Rir −Rri) . (4)

For the sample covariance estimate, finding the estimate of Rc by

first estimating Rr this way is equivalent to the direct estimation of

Rc. Note however that for a general covariance matrix estimator the

circular symmetry property of the complex data,

E
�
x(t)x�(t)

�
⇔

�
Rrr = Rii
Rri = −Rir

, (5)

is not exploited by doing so. For the ML estimate this does not

matter. For other estimators, however, this may give a suboptimal

estimator when applied to stacked real and imaginary parts of com-

plex circularly symmetric Gaussian data. Moreover, several alterna-

tive estimators are not applicable if the number of data is less than

the number of elements in each snapshot. Hence, the methodology

above is sometimes not applicable for small N . On the other hand
it is not clear whether the optimality claimed for the different esti-

mators carries over from real to imaginary data if the estimators are

applied naively directly to complex data either. Hence we choose to

use the methodology described above rather than apply the methods

directly in the naive manner.

In [8] James and Stein considered an estimator of the form

R̂ = LDL� (6)

where L is the lower triangular Cholesky factor of

S =

N	
t=1

x(t)xH(t)

with positive diagonal elements and D is a diagonal matrix with

diagonal elements d1, d2, . . . , dM . The estimator R̂JS which uses

the diagonal elements

d(JS)m =
1

N +M + 1− 2m
(7)

of D in (6) was shown to give the, on average, best estimator of

this form (and also better than the sample covariance matrix) with

respect to the Stein’s loss:

LSt(R, R̂) = Tr
�
R̂R

−1
�
− ln




R̂R−1


−M. (8)

Similarly it was shown in [9] that the estimator R̂EO using

d(EO)m = 2

�
Γ
�
N−m+1

2


Γ
�
N−m

2


�2

(N − 1)2

(N + M + 1− 2m)2(N −m)2

(9)

where Γ(·) is the gamma function, is the best estimator of the form
given by (6) with respect to the quadratic loss

LQ(R, R̂) = Tr
�
(R̂−1R − I)H(R̂−1R − I)

�
.

It is well known that the eigenvalue spread of the sample covari-

ance matrix has a tendency to be larger than that of the true covari-

ance matrix of the underlying data [10], in particular if the number of

data is small. According to, e.g., [11], it was suggested in a lecture

series by C. Stein to consider a sample covariance estimator with

adjusted eigenvalues

R̂ = UΦ (Λ)UH
(10)

where S = UΛUH is the eigenvalue decomposition of S with the

eigenvalues, lm, in decreasing order on the diagonal of Λ and

Φ(Λ) = diag([φ1(Λ) φ2(Λ) · · · φM (Λ)])

for some set of scalar valued functions φm(Λ). In particular the set
of adjusted eigenvalues (or shrunken eigenvalues)

φ
(St)
m (Λ) =

lm

N −M + 1 + 2lm
M�

i = 1
i �= m

1
lm−lj

(11)

was suggested as an approximate minimization of an unbiased es-

timate of the average of the Stein loss in (8). In order to preserve

the order and positiveness of the eigenvalues an isotonic regression

scheme [12] has to be used. When referring to R̂St we use the iso-

tonized version of (11).

In [10] a shrinkage method was considered of the form

R = αS + βI (12)

which minimizes the mean square error asymptotically (asymptoti-

cally in both M and N with M/N < ∞). This covariance matrix
estimate is found as

R̂LW = (1− ρ)R̂S + ρμI (13)

where

ρ = min

�
���

N�
t=1

���x(t)x(t)� − R̂S

���2
F

N2

���R̂S − μI
���2
F

, 1

�
��� (14)

and μ is the average eigenvalue of R̂S: μ � Tr{R̂S}/M .

Using an empirical Bayes (EB) approach an estimator was given

in [10] according to

R̂EB =
N

N + 1
R̂S +

MN − 2N − 2

MN2




R̂S




 1M I . (15)

To handle cases when M > N it was suggested that the geometric

mean of the eigenvalues of R̂S, |R̂S|
1
M , should be replaced by their

algebraic mean, Tr{R̂S}/M , when N < M .

3.1. Expected Likelihood Estimates

So far, with the exception of the sample covariance matrix, the co-

variance matrix estimators above were derived for real valued data.

In [13] an interesting class of covariance matrix estimators where

derived in the complex Gaussian data framework. The basis of this

class is the remarkable fact that the probability distribution of the

likelihood ratio

LR(X ,R) �
l(X ;R)

l(X ; R̂ML)
≤ 1 (16)
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does not depend onR whenR attains its true value (in (16) l(X ;R)
is the likelihood of observing X if R is the underlying covariance

matrix and R̂ML is the maximum likelihood estimate). It turns out

that the distribution of (16) has most of its mass at a significant dis-

tance from 1, and especially so when the number of snapshots ap-

proaches the dimension of the data vector. Hence by parameterizing

the covariance matrix estimate with a parameter β, e.g., using a di-
agonal loading parameter, and choosing the parameter so that (16)

attains its mean value,

LR(X ; R̂(β)) = E{LR(X;R)} � LR0, (17)

which only depends on M and N and can be precalculated, we are

likely to be closer to the true R than the maximum likelihood esti-

mate. In this paper the two parameterizations suggested in [13] are

considered:

R̂AS1 = R̂S + βI (18)

and

R̂AS2 = U1Λ1U
H
1 + λ̄2U2U

H
2 (19)

where U = [U1 U2] is the matrix of eigenvectors of R̂S par-

titioned according to the M − m largest eigenvalues and the m
smallest eigenvalues,Λ1 is the diagonal matrix of the corresponding

M −m largest eigenvalues and λ̄2 is the average of them smallest

eigenvalues. In the latter casem is the parameter which is chosen so

that LR(X ; R̂AS2(m)) is as close as possible to LR0.

4. NUMERICAL STUDY

In our first example an unperturbed uniform linear array (ULA) [5]

of M = 10 sensor elements with half wavelength spacing is used.
Three signals simulated as temporally white complex Gaussian noise

impinge on the array. The signal of interest has a DOA θs = 20◦

and a power, σ2
s , 10 dB above the white complex Gaussian sensor

noise. The other two signals are mutually independent interferences,

uncorrelated with the signal of interest and each with a power 15 dB

above the sensor noise. One interference is located at θi1 = −30◦.
The other interference has an angular location corresponding to a

spatial frequency

ωi2 = π sin(θs) + 2π
γ

M
, (20)

where γ = 0.9. Each plot is based on K = 5000 Monte-Carlo
simulations. For the RCB we use a radius of the uncertainty set

ε = 0.875 throughout the simulations (see below).
In the first example we study the effects of having few data snap-

shots. In Figure 1, the mean signal to interference plus noise ratio

(SINR) is shown versus N ,

mean SINR =
1

K

K�

k=1

σ2
s

��ŵH
k a(θs)

��2

ŵH
kQŵk

where ŵk is the vector of beamformer weights obtained at the kth

realization, Q is the noise plus interference covariance matrix, σ2
s

is the power of the signal of interest and a(θs) is the array steering
vector. Capon using the sample covariance matrix suffers signifi-

cant signal cancellation at low N . The improvement by using the
enhanced estimators is evident in this case.

In Figure 2 the root mean square (RMS) error of the spatial fre-

quency estimate, ω̂s = π sin(θ̂s), versus separation γ (see (20)) is
plotted. The number of data snapshots is N = 22. The thick near-
horizontal dotted line shows when the RMS error corresponds to half
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Fig. 1. SINR versus number of snapshots, N .
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Fig. 2. RMS error of estimated spatial frequency versus separation,

γ, between target and the closest interference measured in standard
beamformer beamwidth.

the separation between the signal of interest and the closest interfer-

ence. We see that RCB and the R̂LW which gave the best SINR

performance previously now give the worst resolution of the Capon

methods. It is well known that Capon, using the sample covariance

estimate, gives accurate location of the peaks despite signal cancel-

lation. Some of the enhanced covariance estimators still tend to give

a slight improvement over using the sample covariance matrix.

In the next examples we instead study the effect of calibration

errors, using a largerN = 60. Calibration errors in the array are sim-
ulated as a perturbation δ(θ) ∼ CN

�
0, σ2

δI
�
to each antenna ele-

ment with the true array steering vector, a0(θ) = a(θ)+δ(θ), where
σ2
δ = 0.005. This corresponds to a standard deviation of the pertur-
bation which is about 7% of the magnitude of each element and 4◦ of
phase. For the RCB this means that P

�
‖a0 − a‖

2 < ε = 0.875
�
=

0.98.
As the target signal power increases, the Capon beamformer

spends more of its degrees of freedom to cancel the desired signal

which, due to the array imperfections, is not preserved by the unit
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Fig. 3. SINR versus target power relative to noise.
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Fig. 4. Relative RMS error of estimated signal power versus target

power relative to noise.

gain constraint. This is reflected in the results shown in Figure 3

where the SINR versus power of the impinging signal of interest is

plotted and in the last figure (Figure 4) where the RRMSE of the es-

timated power at the estimated spatial frequency is presented as the

signal power is varied.

5. CONCLUDING REMARKS

For the limited data case several of the enhanced covariance ma-

trix estimators improve upon the Capon beamformer. Using R̂LW,

which shows the best improvement in SINR for a moderate signal

and interference separation, gives a lower resolution in the spatial

spectrum, similar to the RCB. The expected likelihood based esti-

mators both offer an improved SINR and a slightly better resolution

than the Capon beamformer using the sample covariance matrix.

For the perturbed array case, the enhanced estimators show only

a small improvement in SINR and DOA/power estimates with the

exception of R̂LW which appears to give a sufficiently large diagonal

load to mitigate signal cancellation at the cost of a lower resolution.

The RCB estimates the power of weaker signals better. In this case

the size of the uncertainty set, ε, has been chosen based on a priori
information that in practice is not available.
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