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ABSTRACT

In this paper we derive a class of new parameter free robust adaptive
beamformers using the generalized sidelobe canceler reparameteri-
zation of the Capon beamformer. In this parameterization the mini-
mum variance beamformer is obtained as the solution of a linear least
squares problem. In the case of an inaccurate steering vector and/or
few data snapshots this marginally overdetermined system gives an
ill fit causing signal cancellation in the standard minimum variance
solution. By regularizing the problem using ridge regression tech-
niques we get a whole class of robust adaptive beamformers, none
of which requires the choice of a user parameter. We also propose
a novel empirical Bayes-based ridge regression technique. The per-
formance is compared to other robust adaptive beamformers.

Index Terms— minimum variance beamforming, Capon beam-
forming, robust beamforming, ridge regression, regularization

1. INTRODUCTION

Data dependent beamformers [1, 2] have attracted lots of attention
due to their potential to adaptively suppress interference and noise
in an optimal manner. In particular, the standard Capon beamformer
(SCB) appears to be fundamental in the sense that it can be derived
from several different starting points (see, e.g., [2, 3]). It is well-
known that the interference rejection capabilities of the SCB can in
some cases lead to cancellation of the signal of interest. This hap-
pens, e.g., when the array is not perfectly calibrated. Also a limited
number of data snapshots or correlated signal and interferences can
lead to severe signal cancellation.

To mitigate this, robust Capon beamformers (RCBs) have been
designed by assuming that the array steering vector belongs to an el-
lipsoidal uncertainty set [4, 5, 6]. These RCBs are dependent on the
choice of a user parameter related to the size of the uncertainty set.
However, there is no clear-cut solution to how one should choose
this user parameter when the signal cancellation is due to signal cor-
related interferences or limited data.

The goal of this paper is to robustify the SCB against errors in
the steering vectors and the data covariance matrix. Specifically, we
are interested in completely automatic methods which do not require
the choice of any user parameters. This is in contrast to most robust
adaptive beamformers in the literature.

2. PROBLEM FORMULATION

Assume that a narrowband signal, s(t), impinge on an m element
array of sensors from a certain direction θs, possibly together with

directional interferences, ik(t), from other directions θik . The inter-
ferences are assumed to be uncorrelated with the signal of interest.
The array data snapshots x(t) ∈ �m have the form

x(t) = s(t)+i(t)+n(t) = [as ai1 · · · ain−1 ]

2
6664

s(t)
i1(t)
...

in−1(t)

3
7775+n(t)

for t = 1, . . . , N , where s(t), i(t) and n(t) are the contributions to
the observed data from the signal of interest, the interferences and
the noise (which may contain non-directional interferences), respec-
tively. The steering vector for the signal is as and for the interfer-
ences they are aik , where we have dropped the dependences on θs
and θik for notational convenience. For an arbitrary steering vector
in the array manyfold we use a. Without loss of generality we will
assume that all steering vectors are normalized such that ‖a‖2 = m.

For some complex array weight vector w ∈ �m, the output of
a beamformer is y(t) = wHx(t), where one ideally would like to
null the interferences and noise while allowing the signal of interest
to pass undistorted.

2.1. Adaptive Beamformers

The standard Capon beamformer (SCB) minimizes the output power
subject to a unit gain constraint:

min
�

wHRw s.t. wHa = 1 (1)

where R ∈ �m×m is the data covariance matrix. In practice, R is
usually replaced by the sample covariance matrix:

R̂ =
1

N

NX
t=1

x(t)xH(t).

(In the numerical examples in Section 4, we will use R̂ in lieu ofR
for all methods.) The solution to (1) is well-known to be [3]

wSCB =
R−1a

aHR−1a
. (2)

One of the more recent RCBs [6] uses the alternative covari-
ance fitting formulation of (1) with the added constraint that the true
steering vector ã should be within an uncertainty set centered on the
assumed steering vector a:n

σ̂2, ˆ̃a
o

= argmax
σ2,�̃

σ2 s.t. R − σ2ããH ≥ 0

and ‖a − ã‖2 ≤ ε. (3)
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Once the maximizing ã is found it is appropriate to rescale it so that
‖ˆ̃a‖2 = m, see [6, 7]. The weight vector is then found as

ŵRCB =
R−1ˆ̃a

ˆ̃aHR−1ˆ̃a
. (4)

3. RIDGE REGRESSION-BASED BEAMFORMING

3.1. Beamforming in a Linear Regression Framework

Consider the SCB in (1). The weight vector w can be reparameter-
ized by a new parameter vector η according to

w =
a

m
−Qη (5)

where Q ∈ �m×(m−1) is a semi-unitary matrix so that QHa = 0,
QHQ = I , and η ∈ �

m−1. This reparameterization is known
from the generalized sidelobe canceler [2]. Q can most efficiently
be obtained by the QR-decomposition of a where Q consists of the
lastm− 1 columns of the unitary matrix. Now, (1) can be rewritten
as

min
�

“
Qη − a

m

”H
R
“
Qη − a

m

”
=min

�

‚‚‚‚‚R1/2Q| {z }
��

η −R1/2 a

m| {z }
��

‚‚‚‚‚
2

(6)
where R1/2 denotes the positive definite Hermitian square root of
R and X ∈ �

m×(m−1), b ∈ �
m. Now, (6) can be interpreted as

the marginally overdetermined least squares (LS) formulation of the
linear regression problem

b = Xη + e (7)

where e is a residual term. The SCB (1) is obtained from (7) using
the standard LS estimator (see (6)):

η̂LS = (XHX)−1XHb. (8)

However, by using different approaches for estimating η, other adap-
tive beamformers can be obtained. Specifically, we are interested in
using regularization methods to obtain more stable estimators. This
can be motivated by the fact that, in the linear regression framework,
estimating m − 1 parameters in η from only m samples in b often
leads to poor estimates which are very sensitive to noise. For the case
of an uncalibrated array we can indeed expect noise to be a problem,
since uncertainties in b are not only due to additive noise in the data
via the sample covariance matrix, but also from errors in a. Fur-
thermore, the benefits of an adaptive beamformer are usually most
significant when the directional interferences are much larger than
the noise level. For such a case, the regressor matrix X = R1/2Q
“inherits” a low condition number from R which means that errors
in (7) are amplified in η̂LS.

3.2. Ridge Regression

Ridge regression (RR) is a common approach to regularize ill-conditioned
linear regression problems. The so-called ordinary RR estimate of
the problem (7) is defined as [8]

η̂RR(ρ) = (XHX + ρI)−1XHb (9)

where ρ > 0 is a user parameter. This is called the ordinary RR
estimate because the same load ρ is applied to all diagonal elements
in the matrix to be inverted in (9). In contrast, the generalized RR

(see (11) below) uses different loads for the corresponding diagonal
elements. The problems of regression and RR are well studied in
the statistical literature. Some methods for automatically choosing ρ
will be discussed and evaluated below.

The RR methods to be presented here are, just as most RR meth-
ods in the literature, constructed for real-valued problems. However,
our linear regression problem (7) is complex-valued. To cope with
this, we use the following real-valued version of (7):

b̄ = ¯̄Xη̄ + ē (10)

where we use a bar (̄·) to denote the real-valued version of a vector,
z̄ =

»
Re z
Im z

–
, and ¯̄X =

»
ReX −ImX
ImX ReX

–
. We present the

RR methods in a general framework where b̄ ∈ �m̄, ¯̄X ∈ �m̄×p̄,
η̄ ∈ �

p̄ and ē ∈ �
m̄. In our specific application we have p̄ �

2(m − 1) and m̄ � 2m. The LS and RR estimates ˆ̄ηLS, ˆ̄ηRR are
defined analogously to (8), (9) (note that ˆ̄ηLS ≡ ¯̂ηLS and ˆ̄ηRR(ρ) ≡
¯̂ηRR(ρ)).

Many of the methods below are based on assuming a normally
distributed ē and sometimes a normally distributed η̄. It is difficult to
say how well such assumptions will hold in practice. However, they
are often used for computational convenience and tractability. Also,
as will be shown below, these assumptions lead to well performing
estimators in the current application.

In [8], a Generalized RR (GRR) estimate was derived based on
the following orthogonal version of (10) :

b̄ = Zα + ē

whereZ = ¯̄XP ,α = P T η̄ and ¯̄XT ¯̄X = P diag{d1, . . . , dp̄}P T ,

P TP = PP T = I is the eigenvalue decomposition of ¯̄XT ¯̄X . The
GRR estimator is defined by

ˆ̄ηGRR = P α̂GRR = P (ZTZ + diag{ρ1, . . . , ρp̄})−1ZT b̄
= P diag{(d1 + ρ1)

−1, . . . , (dp̄ + ρp̄)
−1}ZT b̄.

(11)
If ē ∼ N (0, σ2I), the values of ρi that minimize the mean square
error (MSE) of ˆ̄ηGRR are given by ρi = σ2/α2

i [8]. Since both σ2

and α are unknown in practice, they are replaced by their estimates:
ρ̂i = σ̂2/α̂2

i,LS where α̂LS = (ZTZ)−1ZT b̄ and

σ̂2 =
‖b̄ − ¯̄X ˆ̄ηLS‖2

m̄− p̄
(12)

which will be used throughout.
In [9] Hoerl, Kennard and Baldwin suggested using the har-

monic mean of the {ρ̂i}p̄i=1 above as a value for ρ in the ordinary
RR estimate (9):

ρ̂HKB =
p̄σ̂2

ˆ̄ηT
LS
ˆ̄ηLS

. (13)

Based on Bayesian arguments, assuming Gaussian priors for
both ē and η̄, Lawless and Wang [10] proposed

ρ̂LW =
p̄σ̂2

ˆ̄ηT
LS

¯̄XT ¯̄X ˆ̄ηLS
. (14)

Finally, in [11] an information complexity-based regularization
method was presented. Assuming ē ∼ N (0, σ2I),

ρ̂ICOMP = argmin
ρ

1

σ̂2
‖b̄ − ¯̄X ˆ̄ηRR(ρ)‖2 + 2Tr{H}+ 2C1(F

−1)

(15)
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where H = ¯̄X( ¯̄XT ¯̄X + ρI)−1 ¯̄XT , Tr{·} denotes the trace op-
erator, C1(F

−1) = p̄
2
[log(

Pp̄
j=1 νj/p̄)− log(

Qp̄
j=1 νj)/p̄], where

{νj}p̄j=1 are the singular values of F
−1 = ( ¯̄XT ¯̄X + ρI)−1. Also,

Mallows’ CL [12] is obtained using [11]

ρ̂CL = argmin
ρ
‖b̄ − ¯̄X ˆ̄ηRR(ρ)‖2 + 2σ̂2Tr{H}. (16)

3.3. Empirical Bayesian Ridge Regression

In this subsection we consider an empirical Bayesian approach for
estimating ρ. Although the estimator is based on quite natural as-
sumptions, we have not been able to find it in the literature. Our ap-
proach is presented in the complex-valued setting. Similarly to the
previous section, for generality of our approach, we use p to denote
the length of η (in our application p � m− 1).

Assume η and e are independent random variables with the fol-
lowing distributions:

η ∼ CN `
0, α2I

´
, e ∼ CN `

0, σ2I
´
. (17)

It is easy to show that (17) leads to a Gaussian prior on the weight
vector: w ∼ CN `

a/m,α2QQH
´
, where E(w) = a/m is noth-

ing but the standard beamformer (BF) [3].

Under the assumptions (17), the MMSE estimate of η is well-
known to be [13]

η̂MMSE = α2XH(α2XXH + σ2I)−1b = (XHX + ρI)−1XHb
(18)

where ρ = σ2/α2 was used in the second equality. Note that (18) is
exactly the RR estimate (9), but with a special interpretation of the
ridge parameter ρ. As before, the expression (18) can not be used
directly, unless ρ, i.e. σ2, α2, is known. We suggest replacing σ2,
α2 by their ML estimates.

Under the current model, b ∼ CN (0, α2XXH + σ2I), so

p(b|α2, σ2) =
exp{−bH(α2XXH + σ2I)−1b}

πm|α2XXH + σ2I | . (19)

The ML estimates of σ2, α2 (or ρ) are given by

arg max
α2,σ2

p(b|α2, σ2) = arg min
α2,σ2

− ln p(b|α2, σ2)

= arg min
α2,σ2

bH(α2XXH + σ2I)−1b + ln |α2XXH + σ2I |
= argmin

ρ,σ2

�
H (ρ−1

��
H+�)−1

�

σ2
+m lnσ2 + ln |ρ−1XXH+ I |.

(20)
For any value of ρ, the minimizing σ2 is available in closed form:

σ̂2ML(ρ) =
bH(ρ−1XXH + I)−1b

m
. (21)

Inserting (21) in (20) the function left for minimization becomes

ρ̂ML = argmin
ρ>0

m ln[bH(ρ−1XXH+I)−1b]+ln |ρ−1XXH+I |.
(22)

In other words, we only need to perform the 1D minimization over
ρ in (22). One might consider computing (22) over a grid for ρ, or
resort to some more refined numerical optimization method. (Note
that ρ̂ML can be found as one of the roots of a polynomial of degree
2m− 1. The proof is omitted for brevity.)

4. NUMERICAL EXAMPLES

We evaluate the methods usingMonte-Carlo simulations considering
N = 20 data samples from a ULA with m = 10 omnidirectional
sensors with half wavelength spacing. The assumed steering vec-
tors a (both of the source of interest and of the interferences) are
perturbed by white Gaussian noise such that the actual (unknown)
steering vectors are ã = a + δ where δ ∼ CN (0, γ2I). We set
γ2 = 0.01 (i.e., the standard deviation of the error corresponds to
10% of the complex gain of each array element). We have three in-
dependent and temporally white complex Gaussian farfield signals,
with the powers {1, 1, s2} (s2 will be varied), impinging from the
directions of arrival (DOAs) {−30◦, 0◦, 10◦}. The noise, n(t), is
spatially and temporally white and it has a complex Gaussian zero-
mean distribution with variance σ2n = 0.02. We consider the first
and second source as interferences and the third as our source of
interest.

As performance measure we use the mean signal-to-interference-
plus-noise ratio (SINR), when looking in the true direction of the
source of interest (i.e., 10◦):

mean SINR =
1

M

MX
j=1

s2|ŵH
j ãj |2

ŵH
j R

i+n
j ŵj

where Ri+n
j = E{(ij(t) + n(t))(ij(t) + n(t))H} ∈ �

m×m is
the (true) interference-plus-noise covariance matrix, ŵj is the array

weight vector (obtained using R̂j and the assumed steering vectors
a), the sub-index j denotes the simulation number, andM = 1000
denotes the total number of Monte-Carlo simulations. (Note that
Ri+n

j varies with j, because ij(t) is subject to different steering
vector perturbations at each iteration.) For comparison, we include
the mean optimal SINR [4]:

mean SINRopt =
1

M

MX
j=1

s2ãH
j (Ri+n

j )−1ãj . (23)

We also consider the detection frequency versus the false alarm
rate in an energy detector. This is further described in Section 4.2.

We evaluate the performance of the following methods: (a) The
standard beamformer [3]; (b) the SCB (1); (c) the RCB (4) with
ε = E{‖δ‖2} = 0.1 (i.e., the expected squared norm of the per-
turbation); (d) the RCB (4) with ε = 0.175 set such that Prob(ε <
‖δ‖2) = 0.98; (e) GRR (11); (f) HKB-RR (13); (g) LW-RR (14);
(h) ICOMP-RR (15); (i) CL-RR (16); and (j) ML-RR (22). For
increased readability of our plots, however, we do not include the
curves of (e) and (i). Of the omitted methods, GRR generally gives
slightly higher SINRs than BF and SCB. CL performs better and
similarly to ICOMP. However, neither of these methods are among
the methods delivering the best performance.

For the methods for which ρ is not available in closed form, i.e.
for ICOMP (15), CL (16) and ML (22), we compute the relevant
expressions over a fine grid for ρ, from 0 up to the largest eigenvalue

of R̂. (We also tried substantially larger values in the grid, but no
significant difference was observed in the plots.)

4.1. Example 1: SINR performance for varying input SNR

In this example we vary s2 between 0.002 and 0.2 such that the input
SNR (signal-to-noise ratio) goes from −10 dB to 10 dB. The mean
SINRs can be seen in Figure 1. We note that HKB, LW and ML
show the best performance. SCB does not perform well, and in fact
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Fig. 1. Example 1: Mean output SINRs for varying input SNR.
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Fig. 2. Detection rate (PD) versus false alarm frequencies (PFA) for
the energy detector for varying thresholds on the detection energy.

shows decreasing SINR as the SNR increases. This type of behavior
has been observed before [4]. The reason why it occurs is because
SCB tends to see the signal as an interference, and when the signal
gets stronger, SCB uses more of its degrees of freedom to cancel it.

4.2. Example 2: Detection

Here we consider the performance of an energy detector applied to

the beamformed data y(t), i.e.,
NP
t=1

|y(t)|2 �H1

H0

τ , where H1 (the

signal present hypothesis) is chosen over H0 (the interference plus
noise only hyptothesis) if the threshold τ is exceeded. By varying the
threshold for several realizations a reciever operation characteristics
(ROC) curve is obtained, where the detection rate is plotted versus
the frequency of false alarm.

We use a relatively weak signal of interest (in order to make de-
tection non-trivial): s2 = 0.0035, which is approximately 4.6 dB
below the noise and about 27.6 dB below the interference. Monte-
Carlo simulations were performed comprisingM = 5 · 105 realiza-
tions with the signal present and equally many with noise and inter-
ferences only. Figure 2 shows the ROC curves using the different
robust beamformers. For this particular scenario, the BF [3] is only
marginally better than the coin-flip detector (dash-dotted). Here all

the parameter-free RR methods outperform the RCB. Also the meth-
ods excluded from the plots for clarity of presentation gave higher
detection probability than the RCB.

5. CONCLUDING REMARKS
We have presented a class of fully automatic (i.e., free from user
parameters) robust adaptive beamformers based on a reparameteri-
zation of the standard Capon beamformer and on different ridge re-
gression (RR) techniques. In this context we have also proposed an
RR technique from an empirical Bayes perspective, that to the best
of our knowledge is novel.

The proposed methods have been shown, by means of numerical
simulations, to perform, in many cases, better than the robust Capon
beamformer (RCB) of [4, 5, 6] even when knowledge of the array
perturbation has been exploited in the RCB method. Especially ML,
HKB and LW show good overall performance and should be consid-
ered attractive methods for the problem under study.
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