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ABSTRACT
High frequency skywave and surface-wave over-the-horizon

(OTH) radars are required to detect targets in the presence of

powerful clutter and interference from man-made and natural

sources. However, the received disturbances may be highly

structured in the time domain (i.e. pulse-to-pulse) within the

coherent processing interval (CPI). This provides scope for

adaptive Doppler processing to enhance detection performance

with respect to conventional FFT-based methods. This paper

proposes a Generalized Likelihood Ratio Test (GLRT) based

detector that not only possesses the valuable Constant False

Alarm Rate (CFAR) property invariant to disturbance scale-

change, but also exhibits distinct advantages over the adaptive

coherence estimator (ACE) and adaptive subspace detector

(ASD) when unwanted signals are present. Here, we present

the first experimental results for this detector in a HF surface

wave radar Doppler processing application.

Index Terms— Adaptive Signal Detection, HF Radar

1. INTRODUCTION

A significant signal processing challenge for modern HF radar

systems is the simultaneous detection and tracking of ships

and aircraft on different carrier frequencies. Ship detection

may require very long coherent processing intervals (CPIs) to

resolve targets against clutter using conventional FFT-based

Doppler processing (e.g. 30-60 seconds). Such long CPI’s

heavily consume radar resources and prevent the radar from

performing other functions, such as revisiting aircraft targets

sufficiently often to allow tracking. For this reason, there

is currently great interest in performing ship detection with

much shorter CPIs (e.g. 10-20 seconds). We note that apart

from the limited Doppler resolution, conventional processing

is also sub-optimal for temporally correlated interference.

As the received clutter and interference may be highly

structured in the time domain (pulse-to-pulse) within the CPI,

adaptive Doppler processing can potentially enhance target

detection relative to data-independent processing. The goal

of many adaptive processors is to improve the probability of

detection while maintaining a constant false alarm rate, this

is especially desirable in heterogenous environments where

the disturbance is not identically distributed across all of the

resolution cells in the radar coverage.

Unlike the adaptive matched filter (AMF) [1] and Kelly’s

GLRT [2], that are CFAR strictly for an identically Gaussian

distributed disturbance in the primary and secondary data, the

ACE detector [3] maintains the CFAR property providing the

disturbance in the test cell and training data have the same

covariance structure, but possibly with different level or scale.

This additional invariance is attractive as it provides a further

degree of protection in practical situations of interest when

the CFAR output can be lost due to this phenomenon [4].

However, ACE is known to discriminate strongly against

mismatched signals, and this is a problem for useful signals

not exactly described by the assumed target model; either due

to environmental factors (e.g multipath) and/or instrumental

imperfections (e.g. array calibration errors). An extension of

ACE assumes a multi-rank or subspace signal representation

that is more robust to a partially unknown target response.

These adaptive subspace detectors (ASDs) were derived in

[5]. Despite their appeal, a significant shortcoming of the

ACE and ASD tests is that they are susceptible to unwanted

signals present in the primary data but not in the secondary

data. Such signals can cause masking of desired signals and

preclude their detection [4].

The paper exposes this latent susceptibility in practice and

proposes a GLRT-based detection scheme to prevent useful

signal masking when unwanted signals are present. Section 2

formulates the detection problem, while section 3 describes

the adaptive detection method. Experimental results follow in

section 4, and conclusions are given in section 5.

2. PROBLEM FORMULATION

The primary inputs to the Doppler processor consist of P
complex samples x(t) for t = 1, 2, . . . , P received over P
pulses in the range-azimuth cell under test (CUT). In our case,

the generalized problem includes unwanted signals such that

the data vector x = [x(1), . . . , x(P )]T is modeled as,{
H0 : x = su + d,
H1 : x = sd + su + d.

(1)

Under the null hypothesis H0, x is the superposition of a

Gaussian disturbance d and a deterministic unwanted signal

su confined to the CUT (e.g. a coherent echo with Doppler
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components significantly different to the target). Under the

alternative hypothesis H1, the useful signal sd is also present.

Ideally, sd = μejθv(fd) = μejθ[1, ej2πfd , . . . , ej2π(P−1)fd ]T ,

where μejθ is the unknown complex amplitude of the target

and fd is the Doppler frequency shift normalized by the pulse

repetition frequency (PRF). In practice, targets may exhibit

some degree of Doppler spread or mismatch, and a subspace

model may be more appropriate. Targets may be represented

by a linear combination of Q complex phasors closely spaced

in Doppler frequency. By defining a low-rank subspace model

H = [v(fd),v(fd + δ2), . . . ,v(fd + δQ)], with Q � P , and

letting θ be the unknown parameter vector, we can express sd

in the following general form.

sd = Hθ (2)

The unwanted signal may arise from a clutter discrete or other

target with a Doppler shift different to the one being tested by

the detector. A low-rank subspace model can also be adopted

for su, as in [6], with S = [v(fu),v(fu+δ2), . . . ,v(fu+δQ)]
centered on the unwanted signal Doppler shift fu, and φ as the

unknown parameter vector.

su = Sφ (3)

The disturbance d may consist of clutter and/or interference.

Sea clutter is dominated by first-order scatter from ocean wave

components called Bragg waves. In essence, the advance and

recede Bragg waves produce discrete Doppler components

known as Bragg lines [7]. HF interference may originate from

natural sources, such as lightning, or man-made sources such

as radio broadcasts. Lightning discharges are impulsive and

contaminate all range cells in a number of radar pulses within

the CPI. Similarly, the instantaneous bandwidth of man-made

sources can change rapidly and overlap the radar bandwidth

only at certain times, contaminating all range cells but only

in a subset of the P pulses. Both types of disturbance have

temporal structure that can be “learned” from secondary data

vectors dk for k = 1, . . . , K taken from resolution cells close

to the CUT. These vectors are assumed mutually independent

with the same covariance structure as the disturbance in the

primary data. The unknown relative disturbance level being

assigned a value σ2. Such a description (4) is known to be

especially applicable when clutter or interference dominates

[4].

E{dd†} = σ2E{dkd
†
k} = σ2R (4)

3. ADAPTIVE DETECTION METHOD

Under these assumptions, x has a density function fx|Hγ
(x)

conditioned on σ2 for the hypothesis in force (Hγ : γ = 0, 1).

fx|Hγ
(x) =

1
(πσ2)P ‖R‖e{−

1
σ2 (x−mγ)†R−1(x−mγ)} (5)

Here, mγ = γHθ +Sφ, and ‖ · ‖ denotes determinant. Since

the likelihood ratio test cannot be implemented due to the

unknown distributional parameters (σ2,R, θ, φ), we resort to

the GLRT method to derive a detector based on maximizing

the joint density function of the primary and secondary data

fγ(x,d1, . . . ,dk) = fx|Hγ
(x)

∏K
k=1

1
πP ‖R‖ e{−d†

kR−1dk}

with respect to these parameters under each hypothesis.

maxσ2,R,θ,φ f1(x,d1, . . . ,dK)

maxσ2,R,φ f0(x,d1, . . . ,dK)

H1

≷
H0

η (6)

Maximizing f1(x,d1, . . . ,dK) with respect to R and σ2

yields the following expression [3],

(K + 1)(P−1)(K+1)(K − P + 1)K−P+1(KP )P

(eπK)P (K+1)‖R̂‖K+1[(x − m1)†R̂−1(x − m1)]P
(7)

where R̂ = 1
K

∑K
k=1 dkd

†
k is the full rank (K > P ) sample

covariance matrix (SCM). If we maximize f0(x,d1, . . . ,dK)
with respect to the same two parameters, a similar expression

results with m1 replaced by m0 = Sφ in (7).

maxσ2,R f1(·)
maxσ2,R f0(·) =

{
(x − m0)†R̂−1(x − m0)
(x − m1)†R̂−1(x − m1)

}P

(8)

By defining z = R̂−1/2x, Ω = R̂−1/2S, Ψ = R̂−1/2[H,S],
and projections PΨ = Ψ(Ψ†Ψ)−1Ψ†, PΩ = Ω(Ω†Ω)−1Ω†,

the P th root of the GLRT takes the following form [8]:

z†(I − PΩ)z
z†(I − PΨ)z

H1

≷
H0

γ (9)

This detector represents a generalization of the results in [3]

for overall disturbances modeled by a deterministic low-rank

subspace component su = Sφ and a statistical “colored”

component d. This GLRT assumes the subspace S is known,

but in practice, it must be estimated. We propose to make a

first pass assuming S = 0, this detector actually corresponds

to a monotone function of the ACE (Q = 1) or ASD (Q > 1)

tests. Any detections made during the first pass are stored

along with their Doppler coordinate fu. If these detections

are at Doppler bins different to the ones interrogated during

the second pass (i.e. fu �= fd), the detector in (9) is used to

process such cells with an appropriate unwanted signal model

(3). The aim of the second pass is to uncover any new targets

that may have been masked by unwanted signals during the

first pass.

4. EXPERIMENTAL RESULTS

Data Collection: Experimental data were collected by a 16

channel uniform linear array of monopole receiving elements

in the Iluka HFSW radar, located near Darwin in far north

Australia [4]. Each CPI is approximately 16 seconds long

and consists of P = 32 sweeps (pulses) of a linear frequency

modulated continuous waveform with a center frequency fc =
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7.719 MHz, bandwidth B = 50 kHz and a pulse repetition

frequency (PRF) fp = 2 Hz. A total of L = 40 range

cells were processed in 16 conventional beams. Some high

Doppler resolution CPI with P = 128 sweeps (64 s long)

were recorded for identifying targets of opportunity.

High Resolution Spectra: Fig. 1(a) shows an intensity

modulated range-Doppler display for a beam containing three

targets of opportunity. Doppler bins are arranged horizontally

and range cells vertically. Red indicates high power and blue

indicates low power. Conventional Doppler processing was

applied to a 64 second CPI using a Blackman-Harris window.

A number of features are indicated in the display, in particular

the existence of three targets (labelled T1,T2 and T3). Note

that T2 and T3 are in the same range-azimuth cell but have

quite different Doppler shifts. A cell-averaging constant false

alarm rate (CFAR) technique is then applied to normalize the

clutter prior to threshold detection. This is shown in Fig. 1(b)

where all three targets can be detected using the long CPI

(with some false alarms due to clutter near the direct wave).

Impact of Short CPI and Interference: Fig. 2, in the same

format as Fig. 1, shows the conventional processing output for

a short CPI (16 seconds) when interference is present. In this

case, FFT-based processing is not able to detect any targets,

as only the direct wave return is visible after CFAR process-

ing. Using the same data, Fig. 3 shows the output of the ACE

and ASD tests using Q = 3 for the latter with half Doppler

frequency bin displacements δ2 = π/P and δ3 = −π/P .

The disturbance sample covariance matrix R̂ is formed using

K = 4P = 128 snapshots neighboring the CUT in range and

beam (with one guard cell in each dimension). The ACE test

detects T1 and T2, but misses T3 in Fig 3(a) with a detection

threshold of 5 dB. The ASD output in Fig. 3(b) also misses

T3, but performs better on T1 with slightly inferior clutter

suppression near the direct wave. These displays represent

the first pass for the generalized adaptive detection schemes.

Generalized Detectors: The generalized adaptive detector

(9) was applied using Q=1 (G-ACE), and Q = 3 (G-ASD).

The detections made during the first pass, in Figs.3(a) and (b)

respectively, were used to form the unwanted signal model

(3) for the generalized tests in an attempt to uncover other

signals possibly masked by the detected targets T1 and T2.

Fig. 4(a) shows that G-ACE was unsuccessful in uncovering

T3, possibly due to this target (and T2) not being sufficiently

well modeled by a single complex phasor. On the other hand,

it is evident from Fig. 4(b), that the G-ASD detector detects all

the targets with a short CPI in the presence of interference. Its

ability to outperform G-ACE may be due to the robust model

for the undesired and desired signals in the CUT. The Doppler

profiles in Fig. 5 clearly show the advantage of G-ASD over

the ASD in the two range cells containing the targets. While

the ASD performs very well when the CUT contains a single

target (range 18), it fails to detect both targets in range 15.

The G-ASD explicitly takes unwanted signals into account

and is able to detect all targets T1, T2 and T3.

5. CONCLUSIONS

This paper has presented and experimentally tested a robust

adaptive Doppler processing method for ship detection with

short CPI in HFSW radar. The GLRT-based detection method

generalizes ACE and ASD by including subspace unwanted

signals to the overall disturbance. When unaccounted for,

such signals that have the potential to mask targets in the CUT

when ACE or ASD tests are applied. The generalized ASD

(G-ASD) detector was found to be most effective, and unlike

the standard ACE or ASD tests, clearly showed its ability to

detect two targets in the same CUT. The G-ACE version was

not as robust as G-ASD, perhaps due to its inability to model

the unwanted and desired signals well enough, combined with

the highly selective nature of the test. The practical benefits

of the G-ASD are not limited to HFSW radar (or Doppler pro-

cessing). It is envisaged that this technique can be applied to

sky-wave OTH radar, and possibly other radar systems, also

in the areas of spatial processing and space-time adaptive pro-

cessing (STAP) [9].

6. REFERENCES

[1] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, R. Nitzberg; “A
CFAR adaptive matched filter detector,” IEEE Transactions
on Aerospace and Electronic Systems, Vol.28, No.1, January
1992, pp. 208-216.

[2] E. J. Kelly; “An adaptive detection algorithm,” IEEE Trans-
actions on Aerospace and Electronic Systems, Vol.22, No.1,
March 1986, pp. 115-127.

[3] S. Kraut, L. L. Scharf; “The CFAR adaptive subspace detec-
tor is a scale-invariant GLRT,” IEEE Transactions on Signal
Processing, Vol.47(8), 1999, pp. 2538-2541.

[4] G. A. Fabrizio, A. Farina, M. Turley; “Spatial Adaptive
Subspace Detection in OTH Radar,” IEEE Transactions on
Aerospace and Electronic Systems, Vol.39, No.4, 2003,
pp. 1407-1427.

[5] S. Kraut, L. L. Scharf, T. McWhorter; “Adaptive subspace de-
tectors,” IEEE Trans. on Signal Processing, Vol.49, No.1, Jan-
uary 2001, pp. 1-16.

[6] L. L. Scharf, M. L. McCloud; “Blind adaptation of zero forc-
ing projections and oblique pseudo-inverses for subspace de-
tection and estimation when interference dominates noise,”
IEEE Trans. on Signal Processing, Vol.50, No.12, December
2002, pp. 2938-2946.

[7] B. J. Lipa, D. E. Barrick; “Extraction of sea-state from HF
radar sea echo: mathematical theory and modeling”, Radio
Science, Vol. 21, No. 1, 1986, pp 81-100.

[8] G. A. Fabrizio, L. L. Scharf, A. Farina, M. D. Turley; “Ship
detection with HF surface wave radar using short integra-
tion times,” International Radar Conference, IEEE, Toulouse,
France, October 2004.

[9] G. A. Fabrizio, G. J. Frazer, M. D. Turley; “STAP for clutter
and interference cancellation in a HF radar system,” ICASSP-
06, Toulouse, France, May 2006.

II  951



(a) Range-Doppler map for beam with targets of opportunity.

(b) Range-Doppler map after cell-averaging CFAR processing.

Fig. 1. Conventional output with high Doppler resolution.

(a) Range-Doppler map for beam with targets of opportunity.

(b) Range-Doppler map after cell averaging CFAR processing.

Fig. 2. Conventional output with short CPI and interference.

(a) Adaptive Coherence Estimator (ACE)

(b) Adaptive Subspace Detector (ASD)

Fig. 3. Adaptive outputs for short CPI with interference.

(a) Generalized Adaptive Coherence Estimator (G-ACE).

(b) Generalized Adaptive Subspace Detector (G-ASD).

Fig. 4. Output of proposed generalized detection methods.

(a) Adaptive Subspace Detector

(b) Generalized Adaptive Subspace Detector

Fig. 5. Doppler profiles for range cells containing targets.
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