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ABSTRACT

We derive a family of sequences which obey a characteristic-
phase constraint as it applies to finite sequences. We show
these sequences are special cases of the well-known Welti
sequences. We construct a transmit waveform which allows
extremely efficient decomposition, whose outputs are simul-
taneously interpretable as adjacent correlation-filter outputs,
and as lossless input signal representations. We discuss im-
plementation of receive and transmit functions.

Index Terms— Synthetic aperture radar, pulse compres-
sion methods, wavelet transform

1. INTRODUCTION

Modern synthetic aperture radar (SAR) system performance
demands, the opportunities of low-power, complex VLSI pro-
cessing, and miniaturization pressures have converged to pro-
duce interesting system challenges with many tradeoffs be-

tween performance, complexity, power consumption, and size.

Current research proposals include wafer-scale phased-array
antenna systems wherein most of the supporting electronics,
including the transmit/receive modules, waveform generation
circuits, receive-waveform digitization, phase shifters (or time
delays), control hardware, interconnect I/O, signal process-
ing, and supervising microcontroller, are to be implemented
a single silicon wafer. Such a system should use digital ar-
chitectures where feasible to help achieve performance, cost,
and yield objectives.

If such a system is also to achieve advances in signal pro-
cessing capabilities, then there exists a critical need to achieve
these gains with the simplest- and smallest-possible hardware,
because a phased-array system on a wafer may service as
many as a thousand antenna elements. In a SAR imaging
system, for example, information from all antenna elements
is gathered in a central processing location to develop an im-
age. Circuit power and size constraints require that not all
of the processing can be implemented at a central location in
miniaturized systems.

In this work, we propose a new system architecture for a
ranging system using long sequences suitable for pulse com-
pression. We employ concepts related to wavelet processing
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to design a transmit waveform which can be digitally decom-
posed in using very simple, high-speed VLSI. The outputs of
the proposed decomposition are simultaneously approximate
a matched-filter output of a pulse-compression waveform, and
also form a basis for the sampled signal such that (if needed)
the central processing unit can do further processing on the
waveform in a lossless manner.

2. CHARACTERISTIC PHASE E-SEQUENCES

In this section, we seek a real finite discrete sequence C' which
obeys two constraints. The first constraint is the orthogonality
condition required of sequences constructing an orthogonal
wavelet [1]:

> ckriam = 0,¥m # 0 (1)
k
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for some number NV which we will take as the length L of the
sequence. A sequence obeying these constraints is known as
an e-sequence. In addition, we impose a characteristic phase
constraint. Many infinite sequences possess the property that
successive downsamplings of the sequence, in its character-
istic phase, replicate the sequence. We modify this concept
to admit finite sequences, and apply it as a constraint on cg.
We require that successive decimations (by 2) of the finite
sequence be equal to the original sequence up to the end of
the finite decimation. The proposed constraint is illustrated in
Table 1.

The table shows there are five degrees of freedom, X 15’
in choosing an arbitrary sequence of length 8, cf, obeying
the characteristic-phase constraint. Each degree of freedom
specifies one or several values in the sequence: for example,
X5 is the value of co, c3, and cs.

In general, a characteristic-phase sequence of length L
will admit L/2 + 1 degrees of freedom. The orthogonality
conditions generate L /2 nonlinear equations. If we spend one
degree of freedom to set a nonzero sequence amplitude (say,
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X1 | a
X2 Co C3 Cs
X3 cy cr
X4 Cg
X5 Cs

Table 1. Illustration of characteristic phase for finite se-
quences up to length 8.

C = {lal}

Cy = {1,1,1,—1}
Cy={1,1,1,-1,1,1,-1,1}
Cy=1{1,1,1,-1,1,1,~1,1,1,1,1,~1, -1, -1,1, 1}
Cs = {1,1,1,—1,1,1,—1,1,1,1,1,—1,—1,—1,1,...
-1,1,1,1,-1,1,1,—-1,1,—-1,—-1,—-1,1,1,1 —1,1}

Y 9 9 ) Y 9 9 9 9 ) Y

Table 2. Some Type I sequences.

¢o = 1) then we have a system of L/2 nonlinear equations
in L/2 unknowns. In general, these may have no solutions or
multiple solutions.

It is mathematically interesting to note that these equa-
tions (for L < 16) have no solutions for L # 2", as veri-
fied by exhaustive check. There are two solutions for each
L = 2", and each forms a binary sequence with ¢, € {£1}.
Sequence solutions C’ of length L = 27! may be gener-
ated by using a valid C sequence of length 2" in the ini-
tial half, filling in a portion of the values in the second half
determinable from the first half by the characteristic phase
property, and backsolving for the remaining values using the
orthogonal conditions. The resulting sequences are also bi-
nary. These recursive operations generate one sequence set of
lengths 2, n > 1 using the initial sequence C' = 1,1. We
name these “Type I’ sequences. Another sequence set is gen-
erated using the initial sequence C' = 1, —1. We name these
“Type II” sequences.

We list a sampling of such sequences in Table 2.

We note that these sequences are special cases of the Welti
sequences [2]. These sequences, taken in pairs, are compli-
mentary in the sense first defined by Golay in his classic paper
[3]. In his paper, Welti shows that sequences obeying his con-
straints may be generated by one of two transformations from

a shorter such sequence C*) = {A:B}:
CU+Y) — {A:BIA:BY} (3)

or

CU+) = {A:B:A:B}. 4)

where A = —1 % A.

The set of Welti sequences are generated from successive
transformations, which may be of either type at each iteration.
Therefore there are 2log, L Welti sequences of length L. The
Type I sequences of this work are the special case where the
transformations are all of the first type (equation 3) with ini-
tial seed C' = {1,1}. Type II sequences are derived from
transformations of the second kind (equation 4) with initial
seed C = {1, —1}.

The interested reader is referred to the classic and pre-
scient papers of the 1960s [3, 2, 4] for discussions on the
fundamental relationships between (in modern terms) com-
plementarity, quadrature matched sequences, and the orthog-
onality condition.

3. DECOMPOSITION AND THE RANGING
PROBLEM

We now apply the sequences developed in the previous sec-
tion to the problem of range-finding. Recall that the goal of
this work is to send a transmit waveform which is simply re-
lated to a sequence C' such that an efficient decomposition is
a basis for the input waveform. Furthermore, the decompo-
sition should provide outputs from which high-performance
pulse compression is directly attained.

‘We now consider decomposing an input discrete-time sig-
nal using a wavelet decomposition and the sequence C* (where
the % represents time reversal) and its causally-adjusted quadra-
ture matched sequence D*, where (by components)

dy, = (=1)*c 1,0 <k < L. (5)

If we treat the vectors C* and D* as the taps of different FIR
filters, standard discrete wavelet decomposition methods [1]
allow a lossless representation of the input waveform by two
half-rate data streams, each representing the alternate outputs
of the C* and D* filters.

If the input signal coincides with the non-reversed se-
quence C', then we expect to see every-other output of the full-
rate matched filter on one of the decomposition signals. De-
pending on the phase of the input waveform, we will see even
autocorrelations (which are a perfect delta function) or the
odd autocorrelations (which are nonzero but perhaps small).
The situation is as depicted in Figure 1 for a decomposition
based on the length-32 Type I sequence C'5 with an input sig-
nal equal to a zero-padded version of C'y. With the reference
delay, the decimated filter C output is a perfect delta func-
tion, and the filter D output is identically zero, as we have
arranged. However, with a simple unit delay, the same input
signal gives “noisy” signals on both filter C and D, which are
difficult to interpret. With two unit delays, the decomposition
signals return to their reference-delay structure. This behav-
ior highlights an unfortunate property of the discrete wavelet
transform for ranging applications: the frame coefficients are
not shift-invariant. Unless we can arrange all of our targets
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Fig. 1. Decomposition signals for a C5 system using three
different integral delays for the input waveform.

to be at 2T intervals, this decomposition is not particularly
useful as a pulse compression method.

Thus far the discussion of matched filtering has followed
the lines of related work in the spread-spectrum wireless com-
munications literature (see, for example, [5]). We now form a
new input sequence E£* whose elements are formed from C*
and D™ in the following way:

e = ¢+ di1, (6)

that is, the input waveform is the sequence C* added to a
shifted version of the sequence D*. Note that the interior el-
ements of E* are now ternary with e} € {0,£2}. We may
now expect filter C and filter D to alternately take the roles of
“delta function” and “noise” as the phase of the input wave-
form takes its two important values (modulo 2).

In fact this is the case, as we see in Figure 2 for a larger
value of L = 2'2. At the reference delay for the input sig-
nal, we see that filter C recognizes the peak, while filter D is
small noise. With input delay of 1, now filter D recognizes the
same peak, while filter C output is very small noise. We claim
that by arranging for the approximate ping-pong of filters C
and D by a unit delay (instead of the original 2-unit delay),
we have greatly improved the continuity of the filter outputs
for non-integral analog delays. Therefore the decimated filter
outputs may be approximately taken as consecutive outputs of
a full-rate pulse compression filter assuming that the transmit-
ted waveform was C' (not E'!) with acceptable performance if
L is large enough. This performance depends on the inherent
near-orthogonality in our construction of C' and D sequences
at large L, in addition to each sequence’s autocorrelation per-
formance.
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Fig. 2. Pulse compression performance for L = 2'2 for auto-
correlation indices near the peaks.

4. DECOMPOSITION IMPLEMENTATION

We now apply the concepts of multirate processing to pro-
vide highly optimized implementations of the proposed filter
banks based on C.

We proceed by example. The decomposition matrix cor-
responding to a Type I C of length 8 is given by:

14z 42724273
11—zl 42724273
@)
Successive planar factorization by the angles 7/4, 0, and 7 /4
yields the following factorization:

wo- 4 2]

I IR IR R

Therefore, H can be implemented using 3 delays, 6 adders,
and no multiplications. The identity matrix in the factoriza-
tion can be removed. This is an efficient and easily-implemented
circuit.

We note that, by construction, the decomposition filter
matrix H(z) is a 2 by 2 paraunitary matrix and is therefore
amenable to factorization by the either the planar rotation
method or the dyadic factorization method [6]. Both meth-
ods give factorizations which are fully characterized by a se-
quence of angles. Figure 3 shows the factorizations for se-
quences of length L = 128 by both methods. The dyadic fac-
torizations lead to very regular but not particularly simple im-
plementations. However, the planar factorizations show many
factors with 8, = 0, which is implemented simply by a wire
and a delay. In particular, the Type-II-related factorizations
show only 6, € {0,7/2}. In general the planar factorization

1427t —z72 4273
H(z) = [—1 —z 243
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Fig. 3. Matrix factorization angle sequences for Type I and
Type II systems of length L = 128

for Type II, length L sequence systems is:

H(z) = (RVY/2)...(RVH RV (RVHRT  (10)
0
=[ [[ rv*|R® (11
k=L/2
where
11 1 0
R R I

These functions can be implemented using log, L additions,
L/2 — 1 delays, and no multiplications. Type I factorizations
have similar form, with alternating values of R.

5. COMMENTS ON TRANSMIT WAVEFORM
GENERATION

We have focused attention on the decomposition and simul-
taneous pulse compression of a discrete-time waveform. We
now briefly comment on the generation of the transmit wave-
form. Evidently, by equation 6, generation of the C' and D
sequences will suffice.

We computed the linear complexity of these sequences
using the Massey algorithm [7]. Our implementation of this
algorithm assumes the elements of C' and D are from the Ga-
lois field GF(2), and finds the length of the smallest linear
feedback shift which reproduces the sequence. Many pn-style
binary sequences (such as pseudorandom sequences) have lin-
ear complexity on the order of log, L. However, our numeri-
cal study of the subject sequences showed the linear complex-
ity to be & L/2 in all tested cases, which is quite large. There-
fore, shift-register implementations may not be especially ad-
vantageous in this case.

We note that both C' and D may be generated by an im-
pulse function input to H(z), as in [8]. Because the inputs are
one-bit numbers, the hardware precision required to imple-
ment the adders and the delay units are significantly reduced
from the decomposition case (which presumably gets its data
from a multi-bit ADC).

6. CONCLUSIONS

We have proposed a ranging system in which the transmit
waveform is the sum of two binary sequences. The waveform
is designed such that a very simple half-rate 2 by 2 decom-
position filter provides excellent approximations to a full-rate
pulse compression on each output, when L is large enough. In
addition, the two outputs exactly comprise a basis, so that fur-
ther downstream processing may reconstruct the input wave-
form exactly, and simply, if required.

We constructed a sequence using a wavelet orthogonality
condition and a characteristic-phase constraint. We showed
that these constraint lead to binary waveforms which are a
special case of the Welti complementary sequences. We hope
to show, in future work, the pulse-compression performance
in our proposed construction compared to that using other
types of sequences, including the many other Welti construc-
tions.
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