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ABSTRACT

In this paper, we consider the problem of tracking multiple

people in a 3D world domain using a microphone array and

multiple cameras. The data fusion is done using a particle

filter. To support 3D tracking, we propose a new video data

likelihood model using a camera calibration matrix that can

be used for a moving camera without continuous camera cal-

ibration. Then we apply an independent partition particle

filter for multiple objects in order to generate particles effi-

ciently. To detect the current speaker, we use a simple cost

function using the generated particles. Finally we implement

this tracking algorithm as a real-time system.

Index Terms— Particle filter, Acoustic arrays, face de-

tection, multiple target tracking, Monte Carlo methods

1. INTRODUCTION

Joint audio-visual tracking using a particle filter has been a

popular approach for people tracking recently [1–3]. The use

of multiple modalities can overcome the limitation of a sin-

gle one, such as occlusion with visual tracking or reverbera-

tion with acoustic tracking. In addition, a particle filter can

model hidden Markov processes and incorporate non-linear,

non-Gaussian properties of the dynamically changing envi-

ronment beyond what a Kalman filter can accomplish.

Most past research for audio-visual people tracking using

particle filters has been done using 2D camera images [1,2,4],

not 3D world coordinates. Indeed, 2D camera domain track-

ing is sufficient for many applications, but some applications,

nonetheless, require a 3D world coordinate location of the ob-

ject. As one example, we might track multiple people using

static cameras, then let another camera follow the individual

who is talking among the crowd. Zotkin [3] demonstrated

joint audio-visual 3D speaker tracking in world coordinates

but tracked only a single object.

In this paper, we expand Zotkin’s 3D audio-visual tracker

in several ways. First, we track multiple people. Second, we

implement a video data likelihood model with a more flexible

camera calibration matrix that can reflect camera movements

such as panning and tilting without camera re-calibration. Next,

we apply an independent partitioned particle filter [5] to gen-

erate particles efficiently as well as handle data association

issues among multiple objects. In addition, we detect the cur-

rent speaker using a simple cost function based on the least

square error.

This paper is organized as follows. In Section 2, we de-

scribe our particle filter and data likelihood models. In Sec-

tion 3, we describe in some detail our multiple object tracking

algorithm and the method for detection of the current speaker.

Finally we present our experimental setup and simulation re-

sults.

2. PARTICLE FILTER FRAMEWORK

2.1. State-Space Model

Consider each person in the scene (in our case, a conference

room) as one 3D random process. The random process does

not have a constant motion, but random movements within a

certain range. Therefore, we formulate the state-space vector

with only locations and the state space-transition model as a

random walk process with Gaussian noise as follows,

Xt = [χ1
t , χ

2
t , ..., χ

K
t ]T

p(Xt|Xt−1) ∼ N (Xt|Xt−1, Σ)

where χi
t = [xi

t, y
i
t, z

i
t] is the position of the ith individual at

time t, and the K is the number of people in the room.

Then, the state-space vector Xt is concatenated with St

indicating the current speaker among K people at time t.
However, St is not tracked using a particle filter, but detected

using a least square error cost function at each time t.

2.2. Video Data Likelihood

In people tracking using joint audio-visual information, the

different observations should point to the same hidden object.

Since acoustic data show the existence and the position of a

sound source, we track the position of a face centered around

lips.

Different image observations can be used to detect a face.

Contours, face template matches, skin colors, and motion are
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perhaps the most frequently used visual features. Skin color

information is known to be one of the dominant features for

localizing faces, so we used it here.

To detect the skin area in a scene, we use the Bhattacharyya

similarity distance [2] in the UV color domain. While [2]

used the Bhattacharyya similarity distance of the whole im-

age as a video observation, we localize the face candidates

from the Bhattacharyya similarity distance image in Fig. 1.

This localization makes it easy to associate the same object

from multiple cameras.

* *

(a) (b)

Fig. 1. (a) The original image marked with face localization

with yellow stars. (b) The Bhattacharyya similarity distance

image of the left image.

We denote the video feature observation Yv in contrast

with audio observation Ya. Then Yv is defined as a vector of

all face candidates at time t as

Yv = {(uij , vij)T : i = 1, . . . , K, j = 1, . . . , M}. (1)

Here (uij , vij) are image coordinates of the ith face candidate

in the camera j, K is the number of face candidates, and M
is the number of cameras. We assume that all cameras have

the same number of face candidates at time t.
Next, we derive the relationship between a 3D world co-

ordinate x = (xi, yi, zi)T and its corresponding 2D image

coordinate u = (uij , vij)T at camera j. u is derived as a

function in terms of x and the camera calibration matrix C.

u = f(C,x) = const · C · x. (2)

The camera calibration matrix C describes the relation-

ship between the 3D world coordinates and the 2D image co-

ordinates of the camera and can be decomposed into 4 com-

ponents as

C = CIntrinsic · CTilt · CPan · CLoc.

CIntrinsic is an intrinsic camera calibration matrix, CTilt is

the camera tilt matrix, CPan is the camera pan matrix, and

CLoc is the camera location matrix, which is fixed. This con-

figuration allows us to move the camera with pans and tilts

without re-calibration.

CIntrinsic can be determined from various camera cali-

bration tools [6] and does not change unless the focal length

changes. On the other hand, CTilt and CPan are always up-

dated whenever a pan or a tilt occurs. If θ is the panning

angle, φ is the tilting angle, and the location of a camera is

[xp, yp, zp], then CTilt, CPan, and CLoc are as follows:

CTilt =

�
���

1 0 0 0
0 cos(φ) −sin(φ) 0
0 sin(φ) cos(φ) 0
0 0 0 1

�
���

CPan =

�
���

cos(θ) 0 −sin(θ) 0
0 1 0 0

sin(θ) 0 cos(θ) 0
0 0 0 1

�
���

CLoc =

�
���

1 0 0 −xp

0 1 0 −yp

0 0 1 −zp

0 0 0 0

�
��� .

Finally we formulate the video data likelihood function

p(Yv|Xt) as

p(Yv|Xt) ∝ exp(−[Yv − Û(Xt)]T Σ−1
v [Yv − Û(Xt)]/2).

Here Û(Xt) is calculated by (2) using the corresponding cam-

era calibration matrix.

2.3. Audio Data Likelihood

Since a speech signal is wide-band and non-stationary, nar-

row band beamformers using the multiple signal classification

(MUSIC) algorithm [7] do not work well. Even wide-band

MUSIC can not handle room reverberation. For wide-band

signals in reverberant environments, a time delay of arrival

(TDOA) is more stable and is used here as audio measure-

ments. TDOA is computed using the phase transform (PHAT)

which shows better performance than the general cross-correlation

method. Although an estimated TDOA has some error, it is

still effective in the particle filter framework because the pool-

ing of the measurements mitigates the effect of occasional er-

rors.

The audio data likelihood p(Ya|Xt) is then formulated as

p(Ya|Xt) ∝ exp
(−[Ya − τ̂(Xt)]T Σ−1

a [Ya − τ̂(Xt)]/2
)
(3)

where Ya is the vector of the TDOAs estimated from the au-

dio data, and τ̂(Xt) is the vector of the TDOAs estimated

from Xt and the known microphone array geometry.
In contrast to video observations, audio observations at

time t correspond to one person. Hence, p(Ya|χk) for a non-
talking individual k is quite small, so that the total data like-
lihood p(Yt|χk) approaches zero. Therefore we need a cor-
rection term as below,

p(Ya|Xt) ∝ pc+(1−pc)exp
�
−[Ya − τ̂(Xt)]

T Σ−1
a [Ya − τ̂(Xt)]/2

�

(4)

where pc is a small constant that makes the data likelihood a

constant when the exponential term is almost zero. Then, the

audio data likelihood of (4) does not affect the non-talking

individuals.
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Under the assumption that the audio and video observa-

tions are conditionally independent given Xt, the joint data

likelihood is finally described as below,

p(Yt|Xt) ∝ p(Yv|Xt)p(Ya|Xt)

3. JOINT MULTIPLE TARGET TRACKING

3.1. Importance Sampling for Multiple Objects

One of the most important issues in particle filter implemen-

tations is determining how to distribute particles to support

real target states. Generally, the optimum selection is known

as a posterior, so we use it here. Since we defined the state

transition model and video and audio data likelihood models

as Gaussian functions, we can describe the posteriori proposal

function πt analytically using a gradient and a Hessian at its

mode [5, 8]. First, we define our proposal function as

πt ∝ p(Xt|Yt,Xt−1) ∝ p(Yt|Xt)p(Xt|Xt−1).

Let La
y(Xt),Lv

y(Xt), and Lx(Xt) denote the logarithms of

p(Ya|Xt), p(Yv|Xt), and p(Xt|Xt−1), then

log(π) ∝ La
y(Xt) + Lv

y(Xt) + Lx(Xt).

Using a Taylor Series Expansion around its mode Xt, the dis-
tribution of the proposal function is also a Gaussian distribu-
tion, which has its mean and variance as

m(Xt) = Xt + Σ(Xt)
��La

y(Xt) + �Lv
y(Xt) + �Lx(Xt)

�

Σ(Xt) = − (�2La
y(Xt) + �2Lv

y(Xt) + �2Lx(Xt)
)−1

.

3.2. Independent Partition Sampled Particle Filter

In spite of the well-defined proposal function, the higher di-

mension of the state vector required for multiple objects can

decrease system performance. To overcome this problem,

we used a independent partition particle filter (IPPF) [5, 8].

Table1 summarizes the particle filter tracking algorithm.

3.3. Current Speaker Detection

Before detecting the current speaker among tracked multiple

people, we must determine whether or not the fragmented

audio frame is silent. Then, the state St to describe who is

speaking is determined from the least square error below,

St = arg min
k

⎧⎪⎪⎨
⎪⎪⎩

c
P∑

n=1

∑
1<i<j
i<j<M

(τij − τ̂ij(χ
(n)
k ))2

⎫⎪⎪⎬
⎪⎪⎭

, k = 1, ..., K.

Here c is a normalization constant, and P is the number of

particles for each object at time t.

Table 1. Algorithm for the independent partition particle filter

Define Xi
t = [χi

1, . . . , χ
i
K ]T

At time t=0 :

Initialize all Particles with Initial values.

For time t > 0 :

For k=1,. . . , K, χi
k

Sample χi
k∼πk(χk|χi

k, Yk)
Calculate the partition weight function qi

k(χi
k),

qi
k(χi

k) = πk(χk|χi
k, Yk)

Normalize q
(i)
k for each partition

Re-sample χi
k with q

(i)
k and re-index χt−1,k

For X
(i)
t :

Calculate the importance weights using

w
(i)
t = w

(i)
t−1

p(Yt|X(i)
t )p(X

(i)
t |X(i)

t−1)

π(Xt|X(i)
t−1,Y t

k )

Normalize the importance weights w
(i)
t

Re-sample the Particle X
(i)
t

4. SIMULATIONS

To test the proposed algorithms, we equipped a conference

room with three EVI-D30 cameras and six omni-microphones.

Two static cameras, Cam1 and Cam2, were used for the track-

ing, but Cam3 was steered to track the final speaker. Fig. 2(a)

shows the room configuration in the x− y domain. The room

size is 590 cm x 360 cm x 240 cm. Cam1 and Cam2 are

aimed −40◦ and 40◦ clockwise to cover the room as possible,

but they have a physical limitation due to their limited field

of view. The horizontal and vertical field of views of these

cameras are 48.8◦ and 29◦, respectively. The center of the

microphone array is the reference point (0, 0, 0) of the whole

3D room coordinate system.

We simulated the proposed algorithms in two ways. The

first used synthetic data generated using the actual camera cal-

ibration matrices and microphone geometry. In this test, we

assumed there were three people moving inside of the track-

ing range in the 3D domain as in Fig. 2 (a). The positions

of the people moving were converted into the 2D image co-

ordinates, and then degraded with a σ2 = 20 Gaussian noise

to represent face detection inaccuracy in Fig. 2(c) and (d).

Likewise, the positions of the people were also converted into

TDOAs and degraded with a σ2 = 5 uniform noise.

The final tracking result is shown in Fig. 2(b). The es-

timates follow the ground truth trajectories quite well, and

the average difference between the tracked positions and the

ground truth for all three people is less than 4 cm.

The next simulation used real data captured from the con-

ference room. Two people were located at (−59, 238, 51)
and (55, 238, 59). The individuals were not allowed to walk

but could move their bodies. The face localization results for

13 sec are clustered around the ground truth in Fig. 4(a) and

(b). The average difference between the tracked positions and
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Fig. 2. (a) Conference room configuration in the x − y do-

main. (b) The final tracking results using the particle filter

around the ground truth. The dots show the tracking results

and solid lines shows the ground truth. (c) Video observations

at Cam1. (d) Video observations at Cam2.

the ground truth for the two people is less than 7 cm. How-

ever, in these images it was difficult to localize face candi-

dates because of the the small size of the faces, other skin

area around the arms, and the background color similar to the

skin color.

Finally, we checked the speaker detection results using the

synthetic data and real data. In both synthetic and real data,

the people took turns speaking. The result of speaker detec-

tion worked well except that their locations in the synthetic

data were slightly biased in the direction of the other speaker.

(a) (b)

Fig. 3. (a) Camera1 image. (b) Camera2 image.

5. CONCLUSIONS

In this paper, we introduced multiple people tracking in the

3D world domain using a microphone array and multiple cam-

eras, incorporating a particle filter. We proposed a 3D video

data likelihood with a changeable camera calibration matrix

and applied an independent partition particle filter. We also

evaluated our proposed algorithm using synthetic and real data.

However, our system is still preliminary. It has certain limita-

tions and needs further improvements. First of all, we want to
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Fig. 4. (a) Face localization result at Cam1. (b) Face local-

ization result at Cam2. (c) The final tracking results using the

particle filter, which are clustered around the ground truth.

change our video data measurement to use the whole image

instead of a localized face candidates in order to remove er-

rors from the face localization. Another requirement is to use

a different feature for the person. Skin color has the strong re-

striction that people have to face the camera, which may not

always be possible. The contour of the head and shoulders

might be a more robust feature for multiple cameras.
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