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Abstract— In the traditional transmitting beamforming radar
system, the transmitting antennas send coherent waveforms
which form a highly focused beam. In the MIMO radar system,
the transmitter sends noncoherent (possibly orthogonal) broad
(possibly omnidirectional) waveforms. These waveforms can be
extracted by a matched lterbank. The extracted signals can be
used to obtain more diversity or improve the clutter resolution.
In this paper, we focus on space-time adaptive processing (STAP)
for MIMO radar systems which improves the clutter resolution.

With a slight modi cation, STAP methods for the SIMO radar
case can also be used in MIMO radar. However, in the MIMO
radar, the rank of the jammer-and-clutter subspace becomes
very large, especially the jammer subspace. It affects both the
complexity and the convergence of the STAP. In this paper, a new
subspace method is proposed. It computes the clutter subspace
using the geometry of the problem rather than data and utilizes
the block diagonal property of the jammer covariance matrix.
Because of fully utilizing the geometry and the structure of the
covariance matrix, the method is very effective for STAP in
MIMO radar. 1

Index Terms— Beamforming, Space-Time Adaptive Process-
ing (STAP), MIMO Radar, Prolate Spheroidal Wave Function,
Clutter Subspaces, Brennan’s rule.

I. INTRODUCTION

According to the literature [1]- [8], a MIMO radar is
de ned as a radar system which transmits orthogonal wave-
forms [1]- [5] or noncoherent [6]- [8] waveforms instead of
transmitting coherent waveforms which form a focused beam
in the traditional transmit beamforming. In the MIMO radar
receiver, a matched lterbank is used to extract the orthogonal
waveform components. There are two major advantages of
the system. First, these orthogonal components are transmitted
from different antennas. If these antennas are far enough, the
target radar cross sections (RCS) for different transmitting
paths will become independent random variables. Thus each
orthogonal waveform carries independent information about
the target. This spatial diversity can be utilized to perform
better detection [3]. Second, the phase differences caused
by different transmitting antennas along with the phase dif-
ferences caused by different receiving antennas can form a
new virtual array steering vector. With judiciously designed
antenna positions, one can create a very long and critically
sampled array steering vector with a small number of antennas.
Thus the clutter resolution can be dramatically increased [1],
[2] with a small cost. In this paper, we focus on the second
advantage.

There have been many subspace methods proposed in [17]-
[21] and the references therein for improving the complexity
and convergence of the STAP in the traditional SIMO radar.
With a slight modi cation, these methods can also be applied
to the MIMO radar case. However, in the MIMO radar, the
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space-time adaptive processing (STAP) becomes even more
challenging because of the extra dimension created by the
orthogonal waveforms. On the one hand, the extra dimension
increases the rank of the jammer and clutter subspace, es-
pecially the jammer subspace. This makes the STAP more
complex. On the other hand, the extra degree-of-freedom
created by the MIMO radar allows us to lter out more clutter
subspace without affecting the SINR much. In this paper, we
propose a STAP method which computes the clutter subspace
using the geometry of the problem rather than data and utilizes
the block-diagonal structure of the jammer covariance matrix.
Because of fully utilizing the geometry and the structure of the
covariance matrix, our method is very effective for the STAP
in MIMO radar.

II. SIGNAL MODEL

Fig. 1 shows the geometry of the MIMO radar, where dT is
the spacing of the transmitting antennas, dR is the spacing
of the receiver antennas, M is the number of transmitting
antennas, N is the number of the receiving antennas, T is
the radar pulse period, l indicates the index of radar pulse
(slow time), τ represents the time within the pulse (fast time),
vt is the target moving speed toward the radar station, and v is
the speed of the radar station. The radar station movement is
assumed to be parallel to the antenna array. This assumption
has been made in most of the ground moving target indicator
(GMTI) systems. The transmitted signals of the mth antenna
can be expressed as

xm(lT + τ) =
√
Eφm(τ)ej2πf(lT+τ),

for m = 1, 2, · · · ,M − 1, where φm(τ) is the unmodulated
waveform, f is the carrier frequency, and E is the transmitted
energy for the pulse. The demodulated received signal of the
nth antenna can be expressed as

yn(lT + τ − 2r
c

) ≈
M−1∑
m=0

ρtφm(lT + τ)ej
2π
λ (sin θt(2vT l+dRn+dTm)+2vtTl)

+
Nc−1∑
i=0

M−1∑
m=0

ρiφm(lT + τ)ej
2π
λ (sin θi(2vT l+dRn+dTm))

+vn(lT + τ) + wn(lT + τ), (1)

where r is the distance of the range bin of interest, c is the
speed of light, ρt is the amplitude of the signal re ected by
the target, ρi is the amplitude of the signal re ected by the ith
clutter, θt is the looking direction of the target, θi is the looking
direction of the ith clutter, Nc is the number of clutter signals,
vn is the jammer signal received by the nth antenna, and wn

II ­ 9251­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



…
dT

dTsin

(M-1)dTsin

ej(2 ft-x

2dTsin

dT

x0(lT+ )
…

v

target

vt

clutter

…

x1(lT+ )xM-1(lT+ )

vsin

…
dR

dRsin

(N-1)dRsin

ej(2 ft-x

2dRsin

dR…

target

vt

clutter

…

Matched

filterbank

…

Matched

filterbank

…

Matched

filterbank

…

v

vsin

Transmitter Receiver

Fig. 1. MIMO radar scheme.

is the white noise in the nth antenna. The rst term in Eq. (1)
represents the signal re ected by the target. The second term
is the signal re ected by the clutter. The last line represents
the jammer signal and white noise. We assume there is no
internal clutter motion (ICM) or antenna array misalignment
[20]. The phase differences in the re ected signals are caused
by the Doppler shift, the differences of the receiving antenna
locations, and the differences of the transmitting antenna
locations. In the MIMO radar, the transmitting waveforms
φm(τ) satisfy

∫
φm(τ)φ∗k(τ)dτ = δmk. Therefore, one can

extract the suf cient statistics by a matched lterbank as
shown in Fig. 1. The extracted signals can be expressed as

yn,m,l �
∫

yn(lT + τ −Δ)φ∗m(τ)dτ =

ρte
j 2πλ (sin θt(2vT l+dRn+dTm)+2vtTl) + (2)

Nc−1∑
i=0

ρie
j 2πλ (sin θi(2vT l+dRn+dTm)) + vn,m,l + wn,m,l,

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and l =
0, 1, · · · , L − 1, where vn,m,l is the corresponding jammer
signal, wn,m,l is the corresponding white noise, and L is
the number of the pulses in a coherent processing interval
(CPI). To simplify the above equation, we de ne the following
normalized spatial and Doppler frequencies:

fs � dR
λ

sin θt, fs,i � dR
λ

sin θi

fD � 2vT
λ

sin θt +
2vtT
λ

. (3)

One can observe that the normalized Doppler frequency of
the target is a function of both target looking direction and
speed. Usually dR = λ/2 is chosen to avoid aliasing in
spatial frequency. Using the above de nition we can rewrite
the extracted signal in Eq. (2) as

yn,m,l = ρte
j2πfs(n+γm)ej2πfDl + (4)

Nc−1∑
i=0

ρie
j2πfs,i(n+γm+βl) + vn,m,l + wn,m,l,

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and l =
0, 1, · · · , L− 1, where γ � dT /dR and β � 2vT/dR.

The goal of space-time adaptive processing (STAP) is to nd
a linear combination of the extracted signals so that the SINR
can be maximized. Thus the target signal can be extracted from
the interferences, clutter, and noise to perform the detection.
Stacking the MIMO-STAP signals in Eq. (4), we obtain the
NML× 1 vector

y = ( y0,0,0 y1,0,0 · · · yN−1,M−1,L−1 )T . (5)

Then the linear combination can be expressed as w†y, where
w is the weighting for the linear combination. The SINR
maximization can be obtained by minimizing the total variance
under the constraint that the target response is unity. It can be
expressed as the following optimization problem:

min
w

w†Rw

subject to w†s(fs, fD) = 1, (6)

where R � E[yy†], and s(fs, fD) is an NML × 1 vector
which consists of the elements

ej2πfs(n+γm)ej2πfD , (7)

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and
l = 0, 1, · · · , L − 1. This w is called minimum variance
distortionless response (MVDR) beamformer. The covariance
matrix R can be estimated by using the neighbor range bin
cells. In practice, in order to prevent self-nulling, a target-free
covariance matrix can be estimated by using guard cells [20].
The well-known solution to the above problem is [14]

w = R−1s(fs, fD)/(s(fs, fD)†R−1s(fs, fD)). (8)

However, the covariance matrix R is NML × NML. It is
much larger than in the SIMO case because of the extra
dimension. The complexity of the inversion of such a large
matrix is very high. In the sample matrix inversion (SMI)
method [20], the covariance matrix R is directly estimated
as

R̂ =
1
K

K−1∑
k=0

yky
†
k, (9)

where {yk} are the MIMO-STAP vectors of the neighbor
range bin cells of the range bin of interest. Then the esti-
mated covariance matrix is directly substituted into Eq. (8)
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for computing the MVDR beamformer. The estimation of
such a large covariance matrix converges slowly [16]. In the
next section, we develop a faster method with signi cantly
improved performance.

III. NEW STAP METHOD FOR MIMO RADAR

In this section, we introduce a new STAP method for MIMO
radar. In this method, the clutter subspace is computed using
parameters γ and β de ned in Eq. (4) and the jammer-plus-
noise covariance matrix is estimated from clutter-free signals.

A. Computation of the clutter space
For convenience, we study only the clutter term in Eq. (4)

which is expressed as

yc,n,m,l =
Nc−1∑
i=0

ρie
j2πfs,i(n+γm+βl),

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and l =
0, 1, · · · , L − 1. Note that −0.5 < fs,i < 0.5 because dR =
λ/2. De ne ci,n,m,l = ej2πfs,i(n+γm+βl) and

ci = ( ci,0,0,0, ci,1,0,0, · · · , ci,N−1,M−1,L−1 )T . (10)

By stacking the signal {yc,n,m,l} into vector, one can obtain

yc =
Nc−1∑
i=0

ρici.

Assume that ρi are zero-mean independent random variables
with variance σ2c,i. The the clutter covariance matrix can be
expressed as

Rc = Eycy†c =
Nc−1∑
i=0

σ2c,icic
†
i .

Therefore, span(Rc) = span(C), where

C � ( c0, c1, · · · , cNc−1 ) .

The vector ci can be viewed as a nonuniformly sampled
version of the time-and-bandlimited signal ej2πfs,ix, x ∈
[0, N − 1 + γ(M − 1) + β(L − 1)] and fs,i ∈ [−0.5, 0.5].
Such signals can be well approximated by linear combinations
of 2WX +1 prolate spheroidal wave functions (PSWF) [11],
where W is the bandwidth and X is the duration of the time-
limited functions. PSWF were rst used in STAP context by
[12]. In this case, we have W = 0.5 and 2WX + 1 =
N + γ(M − 1) + β(L − 1). This result can be viewed as
a generalization of the Brennan’s rule [10] for the MIMO
radar case. Therefore, the nonuniformly sampled version of
the time-and-band-limited function, namely ci can also be
approximated as

ci ≈
rc−1∑
k=0

αi,kuk,

for some {αi,k}, where rc � N + γ(M − 1) + β(L− 1) and
uk is the corresponding nonuniformly sampled version of the
PSWF [9]. Therefore, we obtain

span(Rc) = span(C) ≈ span(Uc), (11)

where Uc � ( u0 u1 · · · urc−1 ). In practice, the
PSWF can be computed off-line. When the parameters change,
one can obtain the vectors uk by resampling the PSWF. The
details of this method can be found in [9].

B. New STAP method
The target-free covariance matrix can be expressed as R =

RJ + Rc + σ2I, where RJ is the covariance matrix of the
jammer signals, Rc is the covariance matrix of the clutter
signals, and σ2 is the variance of the white noise. By Eq.
(11), there exists a rc× rc matrix Ac so that Rc ≈ UcAcU†c.
Thus the covariance matrix can be approximated by

R ≈ RJ + σ2I︸ ︷︷ ︸
call this Rv

+UcAcU†c. (12)

We assume the jammer signals vn,m,l in Eq. (4) are statisti-
cally independent in different pulses and different orthogonal
waveforms and they satisfy [20]

E[vn,m,l · v†n′,m′,l′ ] =
{

rJ,n,n′ , m = m′, l = l′
0, otherwise,

for n, n′ = 0, 1, · · · , N , m,m′ = 0, 1, · · · ,M , and l, l′ =
0, 1, · · · , L. Using this fact, the jammer-plus-noise covariance
matrix Rv de ned in Eq. (12) can be expressed as

Rv = diag(Rvs,Rvs, · · · ,Rvs),
where Rvs is an N × N matrix with elements [Rvs]n,n′ =
rJ,n,n′ +σ2 for n, n′ = 0, 1, · · · , N . Therefore the covariance
matrix R in Eq. (12) consists of a low-rank clutter covariance
matrix and a block-diagonal jammer-pulse-noise covariance
matrix. By using the matrix inversion lemma [22], one can
obtain

R−1 ≈ R−1v −R−1v Uc(A−1c +U†cR
−1
v Uc)−1U†cR

−1
v . (13)

Assume that the clutter to noise ratio is very large and
therefore all of the eigenvalues of Ac approach in nity. Then
we have A−1c ≈ 0. Substituting A−1c = 0 and Eq. (13)
into Eq. (8), one can obtain the MIMO-STAP beamformer
for spatial frequency fs and Doppler frequency fD as

w ∝ (R−1v −R−1v Uc(U†cR
−1
v Uc)−1U†cR

−1
v )s(fs, fD) (14)

The inversion of the block-diagonal matrix R−1v can be
obtained by computing diag(R−1vs ,R

−1
vs , · · · ,R−1vs ) and the

multiplication of the block-diagonal matrix is also simpler.
The complexity of directly inverting the NML × NML
covariance matrix R is O(N3M3L3). Taking advantage of
the block-diagonal matrix and the low rank matrix, in Eq.
(13), the complexity of computing R−1v is only O(N3) and
the complexity of computing the inversion of (U†cR

−1
v Uc)−1

is only O(r3c ). The overall complexity of computing Eq. (13)
is reduced to O(rcN2M2L2). The bottleneck now becomes
to compute the multiplication of an NML× rc matrix and a
rc ×NML matrix.

In Eq. (14), the matrix Uc can be obtained by the nonuni-
form sampling of the PSWF as described in the last section.
The jammer-pulse-noise covariance matrix Rv requires further
estimation from the received signals. Because of the block-
diagonal structure, one can estimate the covariance matrix
Rv by estimating its submatrix Rvs. The matrix Rvs can
be estimated when there is no clutter and target signals. For
this, the radar transmitter operates in passive mode so that the
receiver can collect the signals with only jammer signals and
white noise [21]. The submatrix Rvs can be estimated as

R̂vs =
1
Kv

Kv−1∑
k=0

rkr
†
k, (15)

where rk is an N × 1 vector which represents the target-free
and clutter-free signals received in N receiving antennas.
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IV. NUMERICAL EXAMPLES

In this section, we compare the SINR performance for
different STAP methods. The SINR is de ned as

SINR � |w†s(fs, fD)|2
w†Rw

,

where R is the target-free covariance matrix. Fig. 2 shows the
comparison of the SINR for fs = 0 and different Doppler
frequencies. In the example, the parameters are M = 5,
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Fig. 2. SINR at looking direction zero.

N = 10, L = 16, β = 1.5 and γ = 10. The latitude is 9000m
and the range of interest is 12728m. For this latitude and
range, the clutter is generated by using the model in [13]. The
clutter to noise ratio (CNR) is 40dB. There are two jammers
at 20◦ and −30◦ degree. The jammer to noise ratio (JNR) of
both jammers equals 50dB. The SINR is normalized so that
the maximum SINR equals 0dB. The SINR performance for
MVDR with perfect covariance matrix is shown in the gure
as an upper bound of the SINR performance of the MIMO-
STAP methods. The corresponding upper bound for the SIMO
system with γ = 1 is also compared. Note that we have
normalized the total transmitting energy so that each antenna
uses the same energy to illuminate all directions. One can
see that the MIMO system has better idea SINR performance
than the SIMO system. This is because the MIMO system
has a better spatial resolution. Four MIMO-STAP methods are
compared. Our method is described in Eq. (14) and the clutter-
free covariance matrix is estimated using Eq. (15). The SMI
method [20] directly estimates the covariance matrix by Eq.
(9) and substitutes it into Eq. (8). The loaded sample matrix
inversion (LSMI) [15] applies an extra diagonal loading before
computing Eq. (8). In this example, the diagonal loading factor
is chosen as ten times the white noise level. The principal
component (PC) method is described in [20]. Lacking use
of the covariance matrix structure, the SMI method has the
slowest convergence. The PC method and LSMI method utilize
the fact that the jammer-plus-clutter covariance matrix has
low rank. The performance of these are about the same. Our
method not only utilizes the low rank property but also the
geometry of the problem. It converges to a satisfactory SINR
with very few clutter-free samples.

V. CONCLUSIONS

The method described in this paper utilizes the knowledge
of the parameters γ and β, the structure of the clutter space,
and the block diagonal structure of the jammer covariance
matrix. We rst estimate the clutter subspace by using the
parameters γ and β in Eq. (11). Using the fact that the
jammer matrix is block diagonal and the clutter matrix has
low rank with known subspace, we can break the inversion
of a large matrix R into the inversions of some smaller
matrices with matrix inversion lemma. Therefore our method
has much smaller computational complexity. Moreover, by
using the structure, fewer parameters need to be estimated. In
our method, only the N ×N matrix Rvs need to be estimated
instead of the the NML×NML matrix R in the SMI method.
Therefore, for a given number of data samples, our methods
has better performance.

In this paper, we only consider the ideal case. In fact, the
clutter subspace might change because of effects such as the
internal clutter motion (ICM) or velocity misalignment [20]. In
this case, a better way might be estimating the clutter subspace
by using both the geometry and the received signals. This idea
will be explored in the future.
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