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ABSTRACT

For bistatic ground moving target indication radar, the clutter
Doppler frequency depends on range for all array geometries.
This range dependency leads to problems in clutter suppres-
sion through STAP techniques. In this paper, we propose a
new approach of applying non-linear prediction theory to ad-
dress the range dependency problem in bistatic airborne radar
systems. This technique uses a non-linear function to obtain
an estimate of the range-dependent inverse covariance matrix.
Simulation results suggest a non-linear fit for the model (non-
linear relationship between the inverse covariance matrices)
and show an improvement in processor performance as com-
pared to conventional STAP methods.

Index Terms— Space-time adaptive processing, ground
moving target indication, non-linear prediction, inverse co-
variance matrix, clutter suppression

1. INTRODUCTION

Space-time adaptive processing (STAP) is a well-established
technique for detection of moving targets by an airborne radar.
Interest in bistatic STAP, where the transmitter and receiver
are separated, has picked up in recent years. Bistatic radar of-
fers several advantages over its monostatic counterpart, such
as the higher possibility of detecting stealth targets.

Training and updating of the clutter covariance matrix is a
key step in the implementation and effectiveness of any STAP
system. In a bistatic or multi-static environment, the usual im-
pediment and possible clutter in-homogeneity experienced in
the linear monostatic side-looking case is further complicated
by the range-dependent nature of the clutter ridge in the angle-
Doppler plane induced by the physical geometry of the two
(or more) aircraft [1]. Thus the bistatic range-dependent clut-
ter spectrum complicates the clutter suppression problem and
degrades the performance. A mismatch in the clutter statis-
tics between the training range cells and the test range cell
will result in the widening of the STAP filter clutter notch.
This will cause target returns from relatively slow-velocity or
low-flying targets to be suppressed or even go undetected.

A number of compensation approaches [2,3] exist to mit-
igate the impact of this range dependency. However, these
techniques effectively only manage to map the mainlobe clut-
ter peak and take little account of sidelobe clutter. Other tech-
niques [4—6] have been proposed that attempt to map the side-
lobe clutter. The major draw-back with these techniques is
that they require knowledge of the radar system navigational
data. Although the data can be estimated, like in [5] and [6],
knowledge of the theoretical direction-Doppler curves or an
initial estimate is required respectively.

A new technique was proposed in [7] to obtain the range-
dependent inverse covariance matrix using linear prediction
theory. In this paper, we extend the prediction to a non-linear
function fit, which highlights the non-linear relationship be-
tween the inverse covariance matrices. This technique retains
the same advantages in that no navigational data or parame-
ters estimation has to be performed as only the clutter data is
required. Moreover, the technique is not restricted to uniform
linear array (ULA) applications. The paper is organized as
follows: The data model of the STAP processor is formulated
in Section 2. Section 3 deals with the analysis of the new ap-
proach and simulation results are presented in Section 4. A
brief conclusion can be found in Section 5.

2. PROBLEM STATEMENT

Consider a radar system utilizing an N-element array with
inter-element spacing d, which transmits an M -pulse wave-
form in its coherent processing interval (CPI). The received
data for each range gate can be organized into an (NM x 1)
space-time snapshot x by stacking the spatial snapshots from
each pulse. The space-time interference (clutter + noise) co-
variance matrix is defined as Q, where Q = E[xx] and E[]
is the expectation operator. Under the assumption of Gaussian
interference, the optimum processor (Wiener filter) is [8]:

Wopt = Q7157 (l)

where s = s;®s; is the (IV M x 1) target signal steering vector
and ® is the Kronecker product. The temporal and spatial
dimensions of the target steering vector are respectively:
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For a bistatic forward-looking radar configuration, the nor-

malized target Doppler and spatial frequencies are:

fp = W @)

fu= dsin cp; cos b, . )
Urad,re a0d V,qq,¢, are the relative velocities of the target to
the receiver and transmitter respectively, A is the wavelength
of the radar signal, PRF is the pulse repetition frequency, ¢,
and 6, are the azimuth and elevation angle of the receiver to
the point of interest on the ground respectively.

For signal processing applications in a practical radar sys-
tem, it is highly unlikely that an infinite sequence of snapshots
can be obtained in each range gate to get the exact clutter co-
variance matrix Q. Thus some performance loss will be in-
curred from estimating the covariance matrix. In addition, the
clutter statistics of the test range gate may be unknown. The
data from the adjacent range gates, conventionally referred to
as the training data, is then used for the estimation of the clut-
ter sample covariance matrix. This gives the sample matrix
inversion (SMI) algorithm [8]. When the above two restric-
tions are present, the estimated covariance matrix Q obtained
from the maximum likelihood (ML) estimator [8] is:
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where Z is the total number of “snapshots” used (sample sup-
port) and z is the training data.

The performance metric used to evaluate the performance
of the processors in this paper is the improvement factor loss
(I Fjpss) [1], widely-used within the radar community:
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The maximum attainable value of I Fj,ss is unity, indicating
that the processor performance is not degraded by clutter. In
practice, the processor performance is degraded by estimation
losses and the clutter range-dependency problem.

3. NON-LINEAR PREDICTION OF INVERSE
COVARIANCE MATRIX (NL-PICM)

In [7], a technique (PICM) was proposed to use linear predic-
tion theory to address the bistatic clutter Doppler range de-
pendency problem. For this paper, we propose a non-linear
function (but linear in parameter) fit to predict the inverse
interference covariance matrix for bistatic STAP. It must be
noted that the non-linear prediction technique (NL-PICM) is
applied to the inverse covariance matrix sequences, as shown

inverse covariance matrix
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Fig. 1. Non-linear prediction of inverse covariance matrix.

in Fig. 1, and not the uncorrelated data snapshots (obtained
by using a sliding window in the space and/or time domain).
This non-linear (polynomial/Volterra series) function, with
linear parameters, allows removing of target ‘spikes’ and pro-
vides good clutter suppression performance in the presence
of aliasing (range and/or Doppler ambiguities) effects. In
this paper, we use the Volterra series (up to the 2nd order)
to model the non-linear fit (other non-linear functions or a
L1-norm can be used). Denote the test range gate as the rt"
range gate and each index A of the stacked inverse covari-
ance matrix of the k*" training range gate as Q' (\), where
A=1,2,...,(NM)2, the non-linear prediction is:

Q. () = anMQL, () + a1 (NG, (V)
+ap(NQl (V) + ama(NQ; 2 (V)
+anMQLMQL (), 8

K
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where Q;, , Q;, and Q;, are the estimated stacked in-
verse covariance matrix for the k%" range gate and the stacked
inverse covariance matrices for the (k + 1)t and (k — 1)t*
range gate respectively; a1, a_1, aya, a_y and aq are the
NL prediction weights and K is the total number of train-
ing range gates required for the prediction sequence. The
(r—1)t" and (r+1)'" range gates (guard-gates) are excluded
for computation of the NL prediction weights.

The inverse covariance matrices and prediction weights
are a function of A. The solution of the NL prediction weights
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are given by the minimum mean squared error (MMSE) of the
true and estimated stacked inverse covariance matrix

2

mygng;c%1u>—ékim . ©)

The series of resulting linear simultaneous equations from
equation (8) can be re-arranged into a matrix form and a so-
lution can be obtained by solving the system of linear simul-
taneous equations. Rewriting equation (8):

~—1
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The linear prediction is done on each A for the inverse
covariance matrix. The prediction weights I' for each X of the
inverse covariance matrix is obtained from the surrounding
training data (regressors). From equation (10),

(@7e) ' e"q, ‘) =T (13)
Equation (8) is simply a standard least squares (LS) problem
with a known solution. Technically, this is smoothing [9]
rather than forward or backward prediction. It should also
be noted that the NL fit can be extended to multi-dimensional
prediction (using more prediction coefficients within the same
range gate). However, increasing the number of prediction
weights results in a corresponding increase in the number of
training range gates required. Hence, there is a trade-off be-
tween more accurate estimates and computational complex-
ity. The number of prediction weights that can be used is lim-
ited since the benefits of using more prediction coefficients
will be negated by the bistatic clutter Doppler range depen-
dency problem.

By exploiting the Hermitian property of the inverse co-
variance matrix, the linear prediction only needs to be car-
ried out for the upper triangular portion. The linear prediction
weights for the lower triangular portion of the inverse covari-
ance matrix are simply the complex conjugate of its upper
triangular portion’s counterparts. By implementing PICM,
there is no need to exploit the Toeplitz-block-Toeplitz struc-
ture of the theoretical covariance matrix, thus eliminating the
requirement for a uniform linear array (ULA), as required
in [5, 6]. Without any such restrictions, PICM can be applied
to arrays of arbitrary configuration.

4. SIMULATION RESULTS

For the simulation analysis, the clutter model is shown in
Chapter 2 of [1]. The bistatic forward-looking (direction of

travel normal to linear antenna array with half wavelength
spacing) radar parameters are shown in Table 1. The trans-
mitter’s flight path is 90° from that of the receiver and the
backlobe of the clutter scatterers’ response was ignored. The
baseline separation (along flight direction) is 2000m and the
receiver maximum sensor pattern direction is ¢ = 45°.

Table 1. Radar Parameters

number of antenna elements N 8
number of pulses delay M 24
pulse repetition frequency PRF 20 kHz
operating frequency fo 10 GHz
receiver & transmitter height Hgr,Hr 1000 m
receiver & transmitter velocity vg, vr 90 m/s

receiver look angle ©r 45°
clutter-to-noise ratio (CNR) 30dB

For all the algorithms shown in this section, a total of
K = 20 training range gates (10 on either side of the range
gate under test) are used for the prediction sequence and the
simulation results are obtained from a Monte Carlo simula-
tion comprising of 500 runs.

Fig. 2 shows the I F},ss plot of the NL-PICM technique
(red solid line) and the PICM technique with four-taps lin-
ear prediction (blue dashed line). The solid line with pluses
shows the sample matrix inversion (SMI) algorithm [8], which
is obtained by straight averaging the covariance matrices Qy
from the training sequence. Lastly, the solid line with squares
shows the SMI algorithm obtained by straight averaging of
the inverse covariance matrices Q,;l . This algorithm is in-
cluded as a reference since the proposed non-linear prediction
is carried out on the inverse covariance matrices.

At the critical clutter notch frequency of 3000Hz, it can be
observed that the NL-PICM technique gives the best perfor-
mance. There is an improvement of 4dB over the PICM tech-
nique. Another important point to note is the narrower clutter
notch provided by NL-PICM over the two SMI processors,
hence enhancing the capability of detecting relatively slow-
moving, low-flying targets. The importance of this region is
indicated by the fact that such target signals tend to fall within
this region and will be attenuated.

For the next set of simulation results in Fig. 3, we show
the performance of the various algorithms in the presence of
range ambiguities. A pulse Doppler radar can be ambigu-
ous in either range or Doppler frequency [1]. For conven-
tional pulse Doppler radar, range ambiguities occur because
of the transmission of repetitive pulses and the clutter echoes
of a certain range gate includes the clutter contributions from
other range gates. The different mainlobe in ambiguous range
gates move in different directions and do not coincide, thus
resulting in additional clutter notches.

The figure is zoomed into the region of interest and the
same plots are used to denote the various algorithms, as in Fig.
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Fig. 2. I F},ss plot for a bistatic forward-looking radar: PICM
(4-taps), NL-PICM, SMI and SMI-(INV Q)

2. In addition, the performance of the angle-Doppler com-
pensation (ADC) algorithm [3] is shown by the dash-dotted
line with circles. This algorithm mitigates for the bistatic
clutter Doppler range dependency problem by compensating
with the peak angle and Doppler frequencies. Thus it per-
forms well within the mainlobe. However, aliasing results
in additional clutter notches due to the overlapping of clutter
spectrums and thus the algorithm does not perform as well
as NL-PICM. The NL-PICM technique has a narrower clutter
notch than the other algorithms, which highlights the benefits
of using NL-PICM in the presence of aliasing effects.

5. CONCLUSION

In this paper, we provided the analysis of using non-linear
prediction theory to obtain an estimate of the range-dependent
inverse covariance matrix. Simulation results indicate a non-
linear fit for the model and show the improvement in clutter
suppression performance over conventional STAP techniques.
The proposed technique is also able to mitigate against the
additional clutter notches in the presence of aliasing effects
and can be applied to arrays of arbitrary configuration. No
navigational data or parameter estimation is necessary as only
the clutter data is required.
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