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ABSTRACT
A MIMO (multi-input multi-output) radar system, unlike

standard phased-array radar, can transmit via its antennas

multiple probing signals. This waveform diversity offered

by MIMO radar enables superior capabilities compared

with a standard phased-array radar. We consider MIMO

radar waveform optimization for parameter estimation for

the general case of multiple targets in the presence of

spatially colored interference and noise. Numerical exam-

ples are provided to demonstrate the effectiveness of the

approaches we consider herein.
Index Terms—Multiple-Input Multiple-Output (MIMO)

Radar, Cramér-Rao Bound (CRB), Waveform optimization

I. INTRODUCTION
MIMO (multi-input multi-output) radar is an emerging

technology that is attracting the attention of researchers and

practitioners alike. Unlike a standard phased-array radar,

which transmits scaled versions of a single waveform, a

MIMO radar system can transmit via its antennas multiple

probing signals that may be quite different from each other.

This waveform diversity offered by MIMO radar enables

superior capabilities compared with a standard phased-

array radar; see, e.g., [1] - [8] and reference therein.
In this paper, we consider MIMO radar waveform op-

timization for parameter estimation for the general case

of multiple targets in the presence of spatially colored

interference and noise. Some of our results can be seen

as significant extensions of those presented in [5], where

the parameter estimation of a single target in the presence

of spatially and temporally white noise is considered.

II. PROBLEM FORMULATION
Consider a MIMO radar equipped with co-located an-

tennas. Let N and M , respectively, denote the numbers of
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transmit and receive antennas. The data matrix received by

such a MIMO radar can be written as:

X =
K∑
k=1

a(θk)bkvT (θk)Φ+ Z, (1)

where the columns of X ∈ CM×L are the received data
vectors, with L being the snapshot number; {θk}Kk=1 are
the locations of the targets with K being the number

of targets at a particular range bin of interest; a(θ) ∈
CM×1 and v(θ) ∈ CN×1 are the steering vectors for the
receiving and transmitting arrays, respectively; {bk}Kk=1
are the target complex amplitudes, which are proportional

to the radar-cross-sections (RCS) of the targets; the rows

of Φ ∈ CN×L are the transmitted waveforms, which are
known and deterministic; Z is the interference and noise
term, which includes the responses due to targets at other

range bins; and (·)T denotes the transpose. We assume

that the columns of Z are independent and identically

distributed circularly symmetric complex Gaussian random

vectors with mean zero and an unknown covariance matrix

Q.
For notational simplicity, (1) can be rewritten as:

X = A(θ)BVT (θ)Φ+ Z, (2)

where

A = [a(θ1) · · · a(θK)], V = [v(θ1) · · · v(θK)], (3)

θ = [θ1 · · · θK ]T , b = [b1 · · · bK ]T , B = diag(b),
(4)

with diag(b) denoting a diagonal matrix with b being its
diagonal.

III. CRAMÉR-RAO BOUND

The Cramér-Rao bound matrix for the unknown target

parameters θ, Re(b) and Im(b) can be written as follows
(see [9] for the derivation):

C = F−1, (5)
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where

F = 2

⎡
⎣ Re(F11) Re(F12) − Im(F12)
ReT (F12) Re(F22) − Im(F22)
− ImT (F12) − ImT (F22) Re(F22)

⎤
⎦ (6)

is the corresponding Fish information matrix (FIM). In (6),

F11 = L(ȦHQ−1Ȧ)� (B∗VHR∗ΦVB)+
L(ȦHQ−1A)� (B∗VHR∗ΦV̇B)+
L(AHQ−1Ȧ)� (B∗V̇HR∗ΦVB)+
L(AHQ−1A)� (B∗V̇HR∗ΦV̇B),

(7)

F12 =L(ȦHQ−1A)� (B∗VHR∗ΦV)+
L(AHQ−1A)� (B∗V̇HR∗ΦV),

(8)

F22 = L(AHQ−1A)� (VHR∗ΦV), (9)

where R̂ = 1
LXX

H and RΦ = 1
LΦΦ are the sample

covariance matrices of the received data matrix X and

the transmitted waveforms Φ, respectively, (·)∗ denotes the
complex conjugate,

Ȧ =
[
∂a(θ1)
∂θ1

· · · ∂a(θK)
∂θK

]
, (10)

and

V̇ =
[
∂v(θ1)
∂θ1

· · · ∂v(θK)
∂θK

]
. (11)

Note that the CRB matrix depends only on RΦ. There-
fore, the waveform optimization problem is actually to op-

timize the sample covariance matrix RΦ of the waveforms.

IV. WAVEFORM OPTIMIZATION
The MIMO radar waveforms, or more precisely, the

sample covariance matrix RΦ of the waveforms, can

be optimized, based on the CRB matrix under a total

power constraint. The CRB matrix can be calculated ap-

proximately, as a function of RΦ, using estimated target
parameters as well as an estimated covariance matrix

of the interference and noise obtained during an initial

probing with uncorrelated waveforms. We consider below

the waveform optimization for the targets in a particular

range bin of interest. Note that the FIM of the target

parameters is a linear function of the covariance matrix

RΦ of the MIMO radar waveforms. Hence minimizing

the trace, the determinant, or the largest eigenvalue of the

CRB matrix with respect to RΦ is a convex optimization
problem that can be solved efficiently using interior point

methods.

First, consider minimizing the trace of the CRB matrix,

which is referred to as the Trace-Opt criterion:

min
RΦ

tr (C) s.t. RΦ ≥ 0, tr (RΦ) = P. (12)

Note that in certain practical applications, we may wish to

place more emphasis on some target parameters, or perhaps

to compensate for the unit selection (such as degrees versus

radians for the target angles), or to balance the units

used for different target parameters (such as angles versus

complex amplitudes). With this in mind, we generalize the

Trace-Opt criterion to the following SDP:

min
{tk}3Kk=1,RΦ

3K∑
k=1

μktk

s.t.

[
F ek
eTk tk

]
≥ 0, k = 1, · · · , 3K,

RΦ ≥ 0, tr (RΦ) = P, (13)

where {tk} are auxiliary variables, ek denotes the kth
column of the identity matrix (of dimension 3K above),

and μk, k = 1, · · · , 3K, is the kth weighting factor. The
original Trace-Opt criterion in (12) corresponds to μk = 1,
k = 1, · · · , 3K. Note that the constraints in the above
SDP are either linear matrix inequalities (LMIs) or linear

equalities in the elements of RΦ.
Second, we consider minimizing the determinant of

the CRB matrix, which is referred to as the Det-Opt
criterion. Since the CRB matrix is the inverse of the FIM,

minimizing |C| is equivalent to maximizing |F|:
max
RΦ

|F| s.t. RΦ ≥ 0, tr (RΦ) = P. (14)

The above max-det problem is a convex optimization

problem that can be solved efficiently using public-domain

software packages, see [10].

Third, consider minimizing the largest eigenvalue of

the CRB matrix, which is referred to as the Eigen-Opt
criterion. Since minimizing the largest eigenvalue of the

CRB matrix C is equivalent to maximizing the smallest

eigenvalue of the FIM F, the waveform optimization under
the Eigen-Opt criterion can be readily cast as a SDP:

min
t,RΦ

−t s.t. F ≥ tI, RΦ ≥ 0, tr (RΦ) = P, (15)

where t is an auxiliary variable and I denotes the identity
matrix (here of dimension 3K).
In addition to the above design problem, we also con-

sider specifically the problem of minimizing the CRB

of one of the target angles only, which we refer to

as the Angle-only criterion. Note that this criterion was
considered in [5] under the spatially and temporally white

noise assumption on Z in (1) and in the single-target case.
Without loss of generality, assume that we are interested in

the angle of the first target. Then the Angle-only criterion is

simply a special case of the generalized Trace-Opt criterion

in (13) with μ1 = 1 and μk = 0, k = 2, · · · , 3K.

IV-A. Structure of the Optimal Waveform Covariance
Matrix
We show below that for all of the aforementioned

optimization criteria and for the total power constraint,
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the optimized transmitted covariance matrix R∗Φ has a

maximum rank of 2K (assuming 2K ≤ N ). Moreover, its
dominant eigenvectors (i.e., the eigenvectors corresponding

to its non-zero eigenvalues) belong to the subspace spanned

by the columns of V and V̇.
Let

R∗Φ =ΔΔ
H . (16)

Define

U = [V V̇], (17)

and decompose Δ additively as

Δ = PUΔ+P⊥UΔ, (18)

where PU = U(UHU)−1UH , and P⊥U = I−PU , with I
denoting the identity matrix. Therefore, we can decompose

R∗Φ as a sum of the following two components:

R∗Φ = PUΔΔHPU + R̃Φ. (19)

with

R̃Φ = P⊥UΔΔ
HP⊥U+PUΔΔ

HP⊥U+P
⊥
UΔΔ

HPU . (20)

It can be readily verified that

VHR̃ΦV = V̇HR̃ΦV = VHR̃ΦV̇ = V̇HR̃ΦV̇ = 0.
(21)

Substituting (19) into (7), (8), and (9), and observing (21),

show that the FIM does not depend on R̃Φ.
Next note that

tr(R̃Φ) = tr(P⊥UΔΔ
HP⊥U ) =‖ ΔHP⊥U ‖2F≥ 0,

where ‖ · ‖F denotes the Frobenius matrix norm. The

equality in (22) holds if and only if ΔHP⊥U = 0, which
implies R̃Φ = 0 (see (20)).
Hence, we have proved that, while the CRB does not

depend on tr R̃Φ, an R̃Φ �= 0 will increase tr(RΦ)
compared with the case of R̃Φ = 0. The conclusion is that
under the total power constraint, we necessarily must have

tr(R̃Φ) = 0. Therefore, the optimal R∗Φ can be written as

R∗Φ = PUΔΔ
HPU � UΛUH (22)

with Λ being a 2K × 2K matrix. By using some matrix

properties, the stated result can be concluded readily.

In the numerical example section, we will optimize the

CRB based criteria with respect to Λ instead of R∗Φ since
the dimension of Λ is usually much smaller than that

of R∗Φ, and since the FIM is also a linear function of

Λ. Consequently, the computational complexity can be
reduced significantly.

V. NUMERICAL EXAMPLES

Consider a MIMO radar system with M = N = 10
antennas. The distance between adjacent antennas is 0.5-

wavelength for the receiving ULA and 5-wavelength for
the transmitting ULA. We use an ASNR (Array Signal-to-

Noise Ratio) = 40 dB. There is a strong jammer at −5◦
with an array interference-to-noise ratio (AINR) equal to

100 dB.
We first consider a single-target case. We assume that

the target is at θ = −16.5◦ and it has a unit complex
amplitude. Figs. 1(a) - 1(b) show the optimized transmit

beampatterns obtained using the Angle-only and Trace-Opt

in the absence of initial angle estimation error. The beam-

patterns obtained by Eigen-Opt and Det-Opt are similar

to Fig. 1(b). Note that the Angle-only criterion results in

a transmit beampattern with a notch at the target angle,

while the other criteria place a peak at the target angle.

We consider the effect of initial angle estimation errors

on the performance of the waveform optimization. Figs.

2(a) - 2(b) show the root CRB (RCRB) of θ and b as
functions of the error of the initial angle estimate. For com-

parison purposes, we also show the RCRB when uncor-

related waveforms are transmitted (i.e., RΦ = (P/N)I),
and when the sum-beam (i.e., RΦ = (P/N)v∗(θ)vT (θ))
is used for transmission. Note that the sum-beam yields

a higher RCRB than the uncorrelated waveforms. This is

because for MIMO Radar, the virtual receive array is a

100-element filled uniform linear array when uncorrelated

waveforms are transmitted, which is much larger than

the 10-element filled uniform linear array for receiving

as a result of sum-beam probing. Note that when the

initial angle estimate is accurate, the Angle-only criterion

results in the smallest RCRB, which provides around 10
dB improvement compared to the uncorrelated waveforms.

However, the approach is very sensitive to the error of

the initial angle estimate. Moreover, since this method

results in no illumination of the target (see Fig. 1(a)), the

corresponding amplitude RCRB is very high. Note also that

Trace-Opt, Eigen-Opt and Det-Opt provide a very close

performance in this case.
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Fig. 1. Optimal transmit Beampatterns in the single-target
case, formed by (a) Angle-Only and (b) Trace-Opt.
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Fig. 2. Root Cramér-Rao bound versus initial angle esti-
mate error for the single-target case. (a) θ and (b) b.

Consider now the two-target case. We assume that θ1 =
−16.5◦, θ2 = −10◦, b1 = 1 and b2 = 20. The first target
is the target of interest. We found out that the Angle-only

criterion is, as before, rather problematic and sensitive to

the initial angle estimation error. Fig. 3 shows the RCRB

curves for the parameters of the target of interest, i.e.,

for θ1 and b1. Note that the optimized waveforms give an
approximately 6 dB lower CRB for the parameters of the
target of interest than the uncorrelated waveforms. Note

also that using the sum-beam gives worse performance

than using uncorrelated waveforms. Hence for this case

of multiple targets, compared to the previous single-target

case, the effect of waveform diversity plays an even more

important role than the effect of increased power at the

targets provided by the sum-beam transmission.
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Fig. 3. Root Cramér-Rao bound versus initial angle esti-
mate errors in θ1 for the two-target case. (a) θ1 and (b)
b1.

VI. CONCLUSIONS

We have investigated MIMO radar waveform optimiza-

tion using several criteria based on the CRB matrix.

Numerical examples have been provided to demonstrate

the effectiveness of the proposed optimization approaches.
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