
MAXIMUM LIKELIHOOD RANGE DEPENDENCE COMPENSATION FOR STAP

Xavier Neyt, Marc Acheroy

Electrical Engineering Department
Royal Military Academy,

Brussels, Belgium
Xavier.Neyt@rma.ac.be
Marc.Acheroy@rma.ac.be

Jacques G. Verly

Dept. of Electrical Engineering
and Computer Science
University of Liège,
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ABSTRACT

We present a new method to estimate the clutter-plus-noise covari-
ance matrix used to compute an adaptive lter in space-time adaptive
processing (STAP). The method computes a ML estimate of the clut-
ter scattering coef cients using a Bayesian framework and knowl-
edge on the structure of the covariance matrix. A priori information
on the clutter statistics is used to regularize the estimation method.

Other estimation methods based on the computation of the power
spectrum using for instance the periodogram are compared to our
method. The result in terms of SINR loss shows that the proposed
method outperforms the other ones.

Index Terms— STAP, Bayes, range-dependence, structured co-
variance matrix

1. INTRODUCTION

In downlooking airborne radars, the received echoes are typically
contaminated with clutter returns that compete with slow-moving
targets. Echoes from slow-moving targets can be separated from
clutter returns by using space-time adaptive processing (STAP) [1].
The computation of the optimum lter for STAP requires an accu-
rate estimate of the covariance matrix (CM) of the clutter-plus-noise
signal at the range of interest. This estimate is usually obtained by
averaging single-realization sample CM obtained at different ranges
around the range of interest. This averaging only provides an ac-
curate estimate if the clutter echoes are independent and identically
distributed (IID) at all ranges. Clutter echoes are typically IID when
obtained for a monostatic sidelooking con guration. This is however
not the case for non sidelooking monostatic con gurations and for
most bistatic [2] and multistatic con gurations [3]. The geometry-
induced non-stationarities of the clutter statistics in range strongly
affect the accuracy of the CM estimate.

We present a model-based method to compensate for the
geometry-induced non-stationarities. The method is relatively close
to that presented in [4, 5] which is based on the registration of the
clutter notch at different ranges prior to averaging. Another similar
method is presented in [6]. These methods are all based on the es-
timation of the clutter scattering coef cients at the range of interest,
making use of the data at all available ranges, prior to a synthesis of
the covariance matrix. These methods will be brie y discussed and,
when possible, a comparison will be presented.

Section 2 describes the signal model we consider. Section 3
presents the Bayesian framework used to estimate the clutter map
from the measurements. In this section, we also compare the per-
formance of the proposed estimation method to other estimation
methods in the case of a simulated clutter. Section 4 describes how

the clutter scattering coef cients can be computed from the clutter
map obtained in the previous section. It shows how to construct the
clutter-plus-noise CM from these clutter scattering coef cients. Sec-
tion 5 presents the results of the CM estimation methods in terms of
end-to-end signal to interference plus noise ratio (SINR) loss. Sec-
tion 6 concludes the paper.

2. SIGNAL MODEL

Let us consider the signal received by a pulse-Doppler radar. No
assumption is made regarding the relative position of the transmitter
and the receiver. The receiver is assumed to be equipped with an
array. Again, no assumption is made regarding the location of the
receiving elements included in the array. The receiver might even
be made of different collaborating platforms as described in [3], as
long as the system is coherent. We further assume to have a perfect
knowledge of the system geometry.

Each coherent processing interval consists of M pulses. For
each pulse, one data sample at the range of interest is taken at each of
theN receiving elements. The lexically-orderedN ×M samples of
the received signal corresponding to the range of interest are denoted
by y, which is modeled by [7]

y =
LX

i=1

acivi + n (1)

where L is the number of clutter patches contributing to the signal,
aci is the (complex) amplitude of the signal contributed by clutter
patch i, vi is theN×M steering vector associated with clutter patch
i, and n is the white Gaussian thermal noise with CM Rn = σ2I .
Equation (1) can be rewritten in matrix notation as

y = V ac + n, (2)

where V = {v1,v2, ...,vL} and ac = {ac1 , ..., acL}T . Given the
assumptions above, the only unknowns in this equation are ac and
n.

The complex amplitude coef cients aci can be decomposed in a
known factor ci that groups the geometric terms of the radar equa-
tion (range attenuation, antenna radiation pattern, ...) and a complex
unknown factor ai that represents the random uctuations of the re-
turns due to speckle effects. One can thus write aci = aici where ci
are known. Taking this into account, (2) can be rewritten as

y = Vca + n (3)

where Vc = {c1v1, c2v2, ..., cLvL}, and a = {a1, ..., aL}T .
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The clutter-plus-noise CM R = E{yy†} can be synthesized
using the model (3)

R = VcÃV
†

c +Rn, (4)

where Ã = diag{ã21, ã22, ..., ã2L} and ã2i = E{|ai|2}.

3. BAYESIAN ESTIMATION METHOD

Our ultimate goal consists in estimating the scattering coef cient of
clutter patch i, i.e. the mean value of |ai|2. However, in order to be
able to compare the proposed method to existing methods, we will
rst estimate ac using a single realization of (1).

An optimal estimate of ac is obtained by maximizing p(ac|y)
with respect to ac, where p(x|y) denotes the conditional probability
of x knowing y. This can be done by using the Bayes identity

p(ac|y)p(y) = p(y|ac)p(ac). (5)

As p(y) does not depend on ac, it does not need to be computed
since it will not affect the maximum. From (2), one has n = y −
V ac. As we assume a white Gaussian noise,

p(n) ∝ e−n†R−1
n n. (6)

Hence, if ac is known, (2) and (6) yield

p(y|ac) ∝ e−(y−V ac)†R−1
n (y−V ac). (7)

The prior probability p(ac) expresses the a priori knowledge on ac.
As aci represents a single realization of the complex amplitude of
the signal scattered by the clutter, we will assume it is independent
and complex-Gaussian distributed [8], and

p(ac) ∝ e−a†cR−1
ac

ac , (8)

where Rac is taken proportional to a diagonal matrix with c =
{c1, ..., cL} on its diagonal.

Finally,

p(ac|y) ∝ e−(y−V ac)†R−1
n (y−V ac)−a†cR−1

ac
ac (9)

and as the matrices Rn and Rac are positive de nite, the maximum
is reached for

ac = (V †R−1
n V +R−1

ac
)−1V †R−1

n y. (10)

Due to the low-rank nature of the problem, V †R−1
n V is typically

rank-de cient and R−1
ac

— the prior knowledge about ac — acts as
a regularizing term.

Let us compare this estimator to other estimators proposed in
the literature. A periodogram is used in [5] to provide an estimate
of |aci |2 arguing that estimates of |aci |2 can be obtained from a
spectral analysis of the signal y. Using the notation of this paper,
the corresponding estimator can be expressed as

ac = V †y (11)

Another estimator that can be used is

aci =
v†

iR
−1
z y

v†
iR

−1
z vi

, (12)

with Rz = E{zz†} and z =
PL

k=1,k �=i ackvk + n. This estimator
is optimum [9] if vi is not correlated with z, which is obviously

not the case here. Under this assumption, (12) can be interpreted as
an adapted matched lter (AMF), which optimally rejects the other
components present in y [9]. An estimate of the CM Rz could be
obtained iteratively in a similar way as in [10]. In the comparison
below, the clairvoyant CM Rz is used.

In [6], the least-squares (LS) estimator is considered

ac = (V †V )−1V †y. (13)

This expression is very similar to (10) without regularization term
R−1

ac
. The expression thus only exists if V †V is full rank. This

means that the number L of clutter patches considered in the model
(1) needs to be taken smaller or equal to the rank of V †V . This ap-
proach requires an ad-hoc method to estimate the number of clutter
patches L. In our approach, by using a regularization term, the only
condition on L is that it should be large enough so that (1) accurately
approximate the underlying continuous clutter integral [7].

Figures 1 and 2 present results of the estimation in the case of a
bistatic scenario involving two aircrafts ying on perpendicular tra-
jectories and the receiving aircraft is equipped with an uniform lin-
ear array. A constant value ai = 1 was considered. In this case, the
steering vectors vi are characterized by a spatial frequency νs and a
Doppler frequency νd (the frequencies are normalized). The steer-
ing vector vi of each clutter patch along an isorange corresponds to
a different frequency coordinate (νsi , νdi). The values of the am-
plitude of the estimated coef cients |aci | are plotted along the curve
described by the frequency coordinate of the corresponding steering
vectors. The antenna diagram is assumed omnidirectional in Fig. 1
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Fig. 1. Comparison of estimates of |aci | in the case of a scenario
involving omnidirectional antennas.

and sinc-shaped in Fig. 2.
As can be seen, the Bayesian method accurately estimates the

coef cients (the corresponding curve actually hides the curve cor-
responding to the true values). Moreover, as expected, the peri-
odogram and the AMF fail to correctly estimate the coef cients. In
Fig. 2, the periodogram actually fails to correctly null out the co-
ef cients in the backlobe of the antenna. This is due to the high
sidelobes of the periodogram.

A development similar to the one leading to (10) can be achieved
from (3) to obtain the following expression for the optimum value of
a

a = (V †
c R

−1
n Vc +R−1

a )−1V †
c R

−1
n y. (14)

The prior knowledge about a is supplied by Ra which again acts as
a regularizing term. Information available about the actual ground

II ­ 914



0.5

0

0.5

0.5

0

0.5
0

1

2

3

4

 

ν
s

ν
d

 

|a
c 

i|
True
Periodogram
AMF
Bayesian

Fig. 2. Comparison of estimates of |aci | in the case of a scenario
involving a directional receive antenna.

cover along the considered isorange can be introduced in the diago-
nal elements of Ra.

Figure 3 presents the results of a simulation in the same condi-
tions as above, involving a directional receive antenna. According
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Fig. 3. Estimates of |ai| and corresponding variance in the case of a
scenario involving a directional antenna.

to the simulation scenario, the true ai’s are constant and equal to
one. The estimated value exhibits zeroes at the location of the ze-
roes of the antenna diagram. It should be stressed that the zeroes
in the clutter map are not directly due to the zeroes in the antenna
diagram, but are rather due to the fact that y contains no informa-
tion about the scattering coef cients at those locations and the l-
ter attempts to minimize the noise in uence. This is illustrated by
the variance of ai (see Fig. 3), obtained from the diagonal terms of
(V †

c R
−1
n Vc +R−1

a )−1.

4. CLUTTER SCATTERING COEFFICIENTS
ESTIMATION

By repeating the estimation process of ac or a at the different avail-
able ranges, an estimation of the clutter map can be obtained. Due to
the speckle [8], the estimated values will exhibit random variations.
This is illustrated in Figs. 4 and 5 where the values of the |aci | resp.
|ai| are displayed as a function of the actual location on the ground.

Fig. 4. Map of the estimated |aci | (in dB) at different range in the
case of a scenario involving a directional antenna, plotted in geo-
graphic coordinates.

Fig. 5. Map of the estimated |ai| (in dB) at different range in the case
of a scenario involving a directional antenna, plotted in geographic
coordinates.

The scenario is the same as above, but with realistic values for a,
i.e. drawn from a circular Gaussian distribution. These clutter maps
exhibit the usual speckle effect. The in uence of the sinc-shaped
antenna diagram is clearly visible in Fig. 4, where the amplitude of
aci is depicted. Figure 5 shows the amplitude of ai and the white
stripes are due to the zeroes in the antenna diagram, where the value
of ai cannot be estimated.

In order to synthesize the clutter-plus-noise CM, the mean
squared magnitude ã2i = E{|ai|2} of ai is required. Estimation of
the mean ã2i from these random values is obtained by spatially av-
eraging the clutter map which is also known as multilooking. The
spatial averaging only makes sense if the averaged quantities are
identically distributed. This means that the averaging may only be
performed over areas having similar ground cover. Moreover, data
from ranges containing targets and more generally data from ranges
where the model (1) is not valid should be excluded from the spatial
averaging.
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In the present application, the average was computed along
straight radial lines from the center of the considered isorange in or-
der to be able to compare the results with those obtained with other
methods. It should be noted that this implies that the ground cover is
homogeneous along straight lines, which is probably not very real-
istic. A more realistic assumption is that the ground cover is homo-
geneous over large patches ( elds, forest, ...) over which averaging
could be performed. The resulting estimate in the case of averaging
along straight radial lines is illustrated in Fig. 6. As can be seen, the

0 20 40 60 80 100 120
0

50

100

150

200

250

300

i

|a
c 

i|

 

 

True
Periodogram
Bayesian

Fig. 6. Comparison of estimates of |aci | after spatial averaging.

averages obtained using the Bayesian method is in close agreement
with the true values. However, spatially averaging the periodogram
output fails to exhibit the zeroes of the antenna diagram.

5. END-TO-END PERFORMANCE

The quality of the estimated clutter-plus-noise CM can be mea-
sured by the SINR loss. Figure 7 shows the SINR loss obtained
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Fig. 7. Comparison of the SINR loss for the proposed method.

using different estimates for the CM. The curve corresponding to the
optimum processor, that uses the clairvoyant CM, is actually hid-
den by the curve corresponding to the proposed Bayesian method.
The effect of the range dependency on the SINR loss is clearly
visible (overnulling) when the sample CM with diagonal loading
(SCM+DL) is used. The SINR loss curve corresponding to the
periodogram-based estimator exhibits a secondary notch due to an
erroneous estimate of the scattering coef cients in the backlobe of
the antenna.

6. SUMMARY AND CONCLUSIONS

The proposed method can be subdivided in three steps: (1) an ana-
lysis step, where a clutter map is computed from the data; (2) an
averaging step where clutter scattering coef cients are obtained by
spatially averaging the clutter map, and (3) a synthesis step, where
the clutter scattering coef cients are used to reconstruct a CM.

The method relies on a model of the signal. This implies a per-
fect knowledge of the geometric con guration of the scenario con-
sidered and, of course, an accurate model. The estimation of the
clutter map makes an optimum use of the available knowledge in a
rigorous framework. The estimation is shown to outperform other
methods in the literature.

A procedure where a clutter map is rst estimated and then spa-
tially averaged to obtain an estimate of the clutter scattering coef -
cients allows to consider arbitrary spatial averaging windows.

The proposed clutter-plus-noise CM estimation method provides
a CM estimate that performs nearly as good as the optimum proces-
sor.

Finally, the proposed method can be used with any monostatic
or bistatic radar con guration, and also with some multistatic con-
gurations.
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